34 research outputs found

    589 External validation of the increased wall thickness score for the diagnosis of cardiac amyloidosis

    Get PDF
    Abstract Aims This study aimed to validate the increased wall thickness (IWT) score, a multiparametric echocardiographic score to facilitate diagnosis of cardiac amyloidosis (CA), in an independent population of patients with increased LV wall thickness suspicious for CA. Methods and results Between January 2019 and December 2020, 152 consecutive patients with increased LV wall thickness suspicious for CA were included. For all patient, the multiparametric echocardiographic score (IWT score) was calculated. To validate the diagnostic accuracy of an IWT score ≥8 to predict the diagnosis of CA, sensibility (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and predictive accuracy (PA) were calculated. Among the 152 patients included in the study, 50 (33%) were diagnosed as CA, 25 (16%) had severe aortic stenosis, 25 (16%) had hypertensive remodelling, and 52 (34%) had hypertrophic cardiomyopathy. Among the 50 and 102 patients with and without CA, 19 (38%) and 1 (1%) showed an IWT score ≥8, respectively. Overall, the diagnostic accuracy of an IWT score ≥8 for the diagnosis of CA in our population was the following: Se 38% (95% CI: 25–53%); Sp 99% (95% CI: 95–100%); PPV 95% (95% CI: 72–99%); NPV 77% (95% CI: 73–80%); PA 79% (95% CI: 72–85%). Conclusions This study reports the first external validation of the IWT score for the diagnosis of CA in patients with increased LV wall thickness. A score ≥8 showed a high Sp, PPV and PA, suggesting that the IWT score can be used to identify CA patients in those with increased LV wall thickness

    Atrial myxoma and Williams-Beuren syndrome. An incidental association?

    Get PDF
    We report the case of a 15 years old girl with Williams-Beuren syndrome and atrial mixoma

    Multimodality Imaging in Cardiomyopathies with Hypertrophic Phenotypes

    Get PDF
    Multimodality imaging is a comprehensive strategy to investigate left ventricular hypertrophy (LVH), providing morphologic, functional, and often clinical information to clinicians. Hypertrophic cardiomyopathy (HCM) is defined by an increased LV wall thickness not only explainable by abnormal loading conditions. In the context of HCM, multimodality imaging, by different imaging techniques, such as echocardiography, cardiac magnetic resonance, cardiac computer tomography, and cardiac nuclear imaging, provides essential information for diagnosis, sudden cardiac death stratification, and management. Furthermore, it is essential to uncover the specific cause of HCM, such as Fabry disease and cardiac amyloidosis, which can benefit of specific treatments. This review aims to elucidate the current role of multimodality imaging in adult patients with HCM

    New perspectives in cardiovascular risk reduction: focus on HDL

    Get PDF
    Cardiovascular diseases represent the leading cause of morbidity and mortality worldwide, mostly contributing to hospitalizations and health care costs. Dyslipidemias represent one of the major cardiovascular risk factor and its management, throughout life-style modifications and pharmacological interventions, has shown to reduce cardiac events. The risk of adverse cardiovascular events is related not only to elevated LDL blood levels, but also to decreased HDL concentrations, that exhibit protective effects in the development of atherosclerotic process. Aim of this review is to summarize current evidences about defensing effects of such lipoproteins and to show the most recent pharmacological strategies to reduce cardiovascular risk through the increase of their circulating levels

    pathogenesis of takotsubo syndrome

    Get PDF
    Takotsubo syndrome (TTS) is an enigmatic disease with a multifactorial and still unresolved pathogenesis. Postulated mechanisms include catecholamine excess, coronary artery spasm, and microvascular dysfunction, however catecholamines seem to play a central role in the pathophysiology of TTS. In facts catecholamines have relevant effects on the vasculature and myocardium. Toxic direct effects of catecholamine on myocardium are mediated by multiple pathway including functional hypoxia, metabolic changes and changes in membrane permeability leading to various electrolytic imbalances. Recently report of familial cases has suggested a genetic component. Further research is required to help clarify the proposed hypotheses and to increase our understanding of the cardiovascular responses to acute stress and the pathophysiology underpinning TTS

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    22q11.2 Deletion Syndrome: Impact of Genetics in the Treatment of Conotruncal Heart Defects

    No full text
    Congenital heart diseases represent one of the hallmarks of 22q11.2 deletion syndrome. In particular, conotruncal heart defects are the most frequent cardiac malformations and are often associated with other specific additional cardiovascular anomalies. These findings, together with extracardiac manifestations, may affect perioperative management and influence clinical and surgical outcome. Over the past decades, advances in genetic and clinical diagnosis and surgical treatment have led to increased survival of these patients and to progressive improvements in postoperative outcome. Several studies have investigated long-term follow-up and results of cardiac surgery in this syndrome. The aim of our review is to examine the current literature data regarding cardiac outcome and surgical prognosis of patients with 22q11.2 deletion syndrome. We thoroughly evaluate the most frequent conotruncal heart defects associated with this syndrome, such as tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries, aortic arch interruption, and truncus arteriosus, highlighting the impact of genetic aspects, comorbidities, and anatomical features on cardiac surgical treatment

    Combined PTPN11 and MYBPC3 Gene Mutations in an Adult Patient with Noonan Syndrome and Hypertrophic Cardiomyopathy

    No full text
    In this report, an atypical case of Noonan syndrome (NS) associated with sarcomeric hypertrophic cardiomyopathy (HCM) in a 33-year-old patient was described. Genetic testing revealed two different disease-causing mutations: a mutation in the PTPN11 gene, explaining NS, and a mutation in the MYBPC3 gene, known to be associated with HCM. This case exemplifies the challenge in achieving a definite etiological diagnosis in patients with HCM and the need to exclude other diseases mimicking this condition (genocopies or phenocopies). Compound heterozygous mutations are rare but possible in HCM patients. In conclusion, this study highlights the important role of genetic testing as a necessary diagnostic tool for performing a definitive etiological diagnosis of HCM
    corecore