10 research outputs found

    Visual scanning patterns and executive function in relation to facial emotion recognition in aging

    Full text link
    OBJECTIVE: The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. METHODS: We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. RESULTS: OA were less accurate than YA at identifying fear (p < .05, r = .44) and more accurate at identifying disgust (p < .05, r = .39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p values < .05, r values ≥ .38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. CONCLUSION: We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition.Accepted manuscrip

    Visual scanning patterns and executive function in relation to facial emotion recognition in aging

    No full text
    OBJECTIVE: The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. METHODS: We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. RESULTS: OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. CONCLUSION: We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition

    The use of plants for the production of therapeutic human peptides

    No full text
    Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies
    corecore