35,413 research outputs found
Quantum repeaters and quantum key distribution: analysis of secret key rates
We analyze various prominent quantum repeater protocols in the context of
long-distance quantum key distribution. These protocols are the original
quantum repeater proposal by Briegel, D\"ur, Cirac and Zoller, the so-called
hybrid quantum repeater using optical coherent states dispersively interacting
with atomic spin qubits, and the Duan-Lukin-Cirac-Zoller-type repeater using
atomic ensembles together with linear optics and, in its most recent extension,
heralded qubit amplifiers. For our analysis, we investigate the most important
experimental parameters of every repeater component and find their minimally
required values for obtaining a nonzero secret key. Additionally, we examine in
detail the impact of device imperfections on the final secret key rate and on
the optimal number of rounds of distillation when the entangled states are
purified right after their initial distribution.Comment: Published versio
Coherent control of trapped ions using off-resonant lasers
In this paper we develop a unified framework to study the coherent control of
trapped ions subject to state-dependent forces. Taking different limits in our
theory, we can reproduce two different designs of a two-qubit quantum gate
--the pushing gate [1] and the fast gates based on laser pulses from Ref.
[2]--, and propose a new design based on continuous laser beams. We demonstrate
how to simulate Ising Hamiltonians in a many ions setup, and how to create
highly entangled states and induce squeezing. Finally, in a detailed analysis
we identify the physical limits of this technique and study the dependence of
errors on the temperature. [1] J.I. Cirac, P. Zoller, Nature, 404, 579, 2000.
[2] J.J. Garcia-Ripoll, P. Zoller, J.I. Cirac, PRL 67, 062318, 200
Quantum gates with "hot" trapped ions
We propose a scheme to perform a fundamental two-qubit gate between two
trapped ions using ideas from atom interferometry. As opposed to the scheme
considered by J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995), it
does not require laser cooling to the motional ground state.Comment: 4 pages, 2 eps figure
Nonclassical photon pairs generated from a room-temperature atomic ensemble
We report experimental generation of non-classically correlated photon pairs
from collective emission in a room-temperature atomic vapor cell. The
nonclassical feature of the emission is demonstrated by observing a violation
of the Cauchy-Schwarz inequality. Each pair of correlated photons are separated
by a controllable time delay up to 2 microseconds. This experiment demonstrates
an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme
for scalable long-distance quantum communication.Comment: 4 pages, 2 figure
- …