183 research outputs found

    Detection of the Glass Transition of Polymers Used in Art and Art-Conservation Using Raman Spectroscopy

    Get PDF
    In this work, Raman spectroscopy was employed for the detection of the glass transition temperatures (Tg) of some thermoplastic polymers and natural terpenoid resins. In particular, our attention was focused on evaluating the Tg of polystyrene and colophony. The measurements returned Tg values in accordance with those reported in the literature obtained using the DSC technique, thus confirming the reliability of the approach proposed herein. Further studies will be focused on the evaluation of Tg temperature changes depending on materials treatments and ageing

    Tumor-Associated Macrophages in Multiple Myeloma: Key Role in Disease Biology and Potential Therapeutic Implications

    Get PDF
    Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy

    Ligand exchange on CdSe nanoplatelets for the solar light sensitization of TiO2 and ZnO nanorod arrays

    Get PDF
    In quantum dot (QD) solar cells, the ex situ sensitization of wide band gap semiconductors (WBSCs) makes it possible to control the shape and the passivation of the nanosized sensitizer. Hence, ex situ techniques can be used to investigate how the band gap of the sensitizers affects the performance of quantum dot solar cells. The latter can be precisely controlled in 1D confined structures such as quasi-2D nanoplatelets (NPLs), the thickness of which is defined with an atomic precision. In this work, we tested and thoroughly characterized the attachment of 7, 9 and 11 monolayers thick CdSe NPLs (as well as QDs for the sake of comparison) to ZnO and to TiO2 nanorods. A crucial point of the ex situ techniques is the choice of bifunctional ligands that link the nanosized sensitizers to the WBSCs. Besides the well-known mercaptopropionic acid, we also studied two ‘atomic linkers’ (OH− and SH−) to minimize the distance between the sensitizer and the oxide. The as-prepared systems have been analyzed by UV/VIS absorption and Raman spectroscopy. Among them, SH− was found to be the most versatile linker that enabled the efficient attachment of all types of CdSe nanocrystals on ZnO and TiO2 nanorods.Fil: Szemjonov, A.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Tasso, Mariana Patricia. Laboratoire de Physique Et D'etude Des Materiaux; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ithurria, S.. Laboratoire de Physique Et D'etude Des Materiaux; FranciaFil: Ciofini, I.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Labat, F.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Pauporté, T.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Franci

    Evidence for discrete solar and lunar orientation mechanisms in the beach amphipod, Talitrus saltator Montagu (Crustacea, Amphipoda)

    Get PDF
    Animals that use astronomical cues to orientate must make continuous adjustment to account for temporal changes in azimuth caused by Earth's rotation. For example, the Monarch butterfly possesses a time-compensated sun compass dependent upon a circadian clock in the antennae. The amphipod Talitrus saltator possesses both a sun compass and a moon compass. We reasoned that the time-compensated compass mechanism that enables solar orientation of T. saltator is located in the antennae, as is the case for Monarch butterflies. We examined activity rhythms and orientation of sandhoppers with antennae surgically removed, or unilaterally occluded with black paint. Removing or painting the antennae did not affect daily activity rhythms or competence to orientate using the sun. However, when tested at night these animals were unable to orientate correctly to the moon. We subsequently measured circadian gene expression in the antennae and brain of T. saltator and show the clock genes period and cryptochrome 2 are rhythmically expressed in both tissues, reminiscent of other arthropods known to possess antennal clocks. Together, our behavioural and molecular data suggest that, T. saltator has anatomically discrete lunar and solar orientation apparatus; a sun compass, likely located in the brain and a moon compass in the antenna

    Exploring the Potential of Portable Spectroscopic Techniques for the Biochemical Characterization of Roots in Shallow Landslides

    Get PDF
    In the present work, Raman, Fourier Transform Infrared (FTIR) and elemental Laser-Induced Breakdown Spectroscopy (LIBS) spectroscopic techniques were used for the assessment of the influence of plant root composition towards shallow landslide occurrence. For this purpose, analyses were directly carried out on root samples collected from chestnut forests of the Garfagnana basin (northern Apennines, Italy) in different areas devoid and affected by shallow landslides due to frequent heavy rain events. Results have highlighted a correlation between the biochemical constituents of wooden roots and the sampling areas. In particular, different content of lignin/cellulose, as well as minerals nutrients, have been detected in roots collected where shallow landslides occurred, with respect to more stable areas. The results achieved are in line with the scientific literature which has demonstrated the link between the chemical composition of roots with their mechanical properties and, in particular, tensile strength and cohesion. Finally, portable spectroscopic instrumentations were employed without the need for either any sample preparation for Raman and LIBS spectroscopy or minimal preparation for FTIR spectroscopy. This novel and fast approach has allowed achieving information on the content of the major constituents of the root cell, such as cellulose and lignin, as well as their mineral nutrients. This approach could be reasonably included among the vegetation protection actions towards instability, as well as for the evaluation of shallow landslide susceptibility, combining geological, vegetational and biochemical parameters with sustainability

    A Kinetic Model for Photoswitching of magnetism in the High Spin Molecule [Mo(IV)(CN)2(CN-Cu(II)(tren))6](ClO4)8

    Full text link
    The heptanuclear complex [Mo(IV)(CN)2(CN-CuL)6]8+ exhibits photomagnetism. An earlier microscopic model showed that the transition dipole moments for excitation in different spin manifolds are similar in magnitude. In this paper, we attribute photomagnetism to the long lived S=3 charge transfer excited state for which there appears to be sufficient experimental evidence. We model the photomagnetism by employing a kinetic model which includes internal conversions and intersystem crossings. The key feature of the model is assumption of the existence of two kinds of S=3 states: one which has no direct pathway for internal conversion and the other characterized by slow kinetics for internal conversion to the low-energy states. The trapped S=3 state can decay via a thermally activated barrier to the other S=3 state. The experimental temperature dependence of magnetization plot is fitted using rate constants with Arrhenius dependence. The two different experimental cMT vs. T curves obtained with different irradiation times are fitted with our model. Our studies show that the photomagnetism in these systems is governed by kinetics and not due to differences in oscillator strengths for excitation of the different spin states.Comment: 17 pages including 5 figures. Submitted to Phys. Rev.

    Drug resistance and minimal residual disease in multiple myeloma

    Get PDF
    Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy

    Automated characterization of varnishes photo-degradation using portable T-controlled Raman spectroscopy

    Get PDF
    In this work, a portable-Raman device (excitationwavelength 1064 nm)was employed for the first time for continuously monitoring the complex molecular dynamics of terpenoid resins (dammar, mastic, colophony, sandarac and shellac), which occur during their ageing under artificial light exposure. The instrumentation was equipped with a pyroelectric sensor allowing for temperature control of the sample's irradiated surface while the acquisition of spectra occurs by setting fixed maximum temperature and total radiant exposure. Resins were dropped into special pits over a dedicated rotating wheelmoved by a USB motor. The rotation allowed samples sliding between the positions designated for the acquisition of the Raman spectra and that for artificial ageing. Samples were exposed to artificial light for 45-days and almost 400 spectra for each resin sample were collected. The exposure to artificial light led to significant changes allowing the characterization of the alteration process. The automated acquisition of a large number of spectra overtime during light-exposure has given the possibility to distinguish fast dynamics,mainly associated to solvent evaporation, fromthose slower due to resins photo-degradation processes
    • …
    corecore