2,405 research outputs found
Orientation-dependent binding energy of graphene on palladium
Using density functional theory calculations, we show that the binding
strength of a graphene monolayer on Pd(111) can vary between physisorption and
chemisorption depending on its orientation. By studying the interfacial charge
transfer, we have identified a specific four-atom carbon cluster that is
responsible for the local bonding of graphene to Pd(111). The areal density of
such clusters varies with the in-plane orientation of graphene, causing the
binding energy to change accordingly. Similar investigations can also apply to
other metal substrates, and suggests that physical, chemical, and mechanical
properties of graphene may be controlled by changing its orientation.Comment: 5 pages, 6 figure
Strain induced stabilization of stepped Si and Ge surfaces near (001)
We report on calculations of the formation energies of several [100] and
[110] oriented step structures on biaxially stressed Si and Ge (001) surfaces.
It is shown that a novel rebonded [100] oriented single-height step is strongly
stabilized by compressive strain compared to most well-known step structures.
We propose that the side walls of ``hut''-shaped quantum dots observed in
recent experiments on SiGe/Si films are made up of these steps. Our
calculations provide an explanation for the nucleationless growth of shallow
mounds, with steps along the [100] and [110] directions in low- and high-misfit
films, respectively, and for the stability of the (105) facets under
compressive strain.Comment: to appear in Appl. Phys. Lett.; v2=minor corrections,figs resize
Rapidly Rotating Fermi Gases
We show that the density profile of a Fermi gas in rapidly rotating potential
will develop prominent features reflecting the underlying Landau level like
energy spectrum. Depending on the aspect ratio of the trap, these features can
be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil
Understanding single-top-quark production and jets at hadron colliders
I present an analysis of fully differential single-top-quark production plus
jets at next-to-leading order. I describe the effects of jet definitions,
top-quark mass, and higher orders on the shapes and normalizations of the
kinematic distributions, and quantify all theoretical uncertainties. I explain
how to interpret next-to-leading-order jet calculations, and compare them to
showering event generators. Using the program ZTOP, I show that HERWIG and
PYTHIA significantly underestimate both s-channel and t-channel
single-top-quark production, and propose a scheme to match the relevant samples
to the next-to-leading-order predictions.Comment: 40 pgs., revtex4, 35 ps figs; added Fig. 4, 1 Ref., minor
clarifications, to appear in Phys. Rev.
Surface Science Letters Structure and stability of the Si(1 0 5) surface
Abstract Recent experimental studies have shown that well-annealed, unstrained Si(1 0 5) surfaces appear disordered and atomically rough when imaged using scanning tunnelling microscopy. We construct new models for the Si(1 0 5) surface that are based on single-and double-height steps separated by Si(0 0 1) terraces, and propose that the observed surface disorder of Si(1 0 5) originates from the presence of several structural models with different atomic-scale features but similar energies. This degeneracy can be removed by applying compressive strains, a result that is consistent with recent observations of the structure of the Ge/Si While the structure of Ge/Si(1 0 5) surface has been recently elucidated, the Si(1 0 5) surface shows intriguing features that are not well understood. Experimental work by Tomitori et al. [8], Fujikawa et al. [5] and Zhao et al
Ab-initio density functional studies of stepped TaC surfaces
We report on density functional total energy calculations of the step
formation and interaction energies for vicinal TaC(001) surfaces. Our
calculations show that double and triple-height steps are favored over
single-height steps for a given vicinal orientation, which is in agreement with
recent experimental observations. We provide a description of steps in terms of
atomic displacements and charge localization and predict an experimentally
observable rumpled structure of the step-edges, where the Ta atoms undergo
larger displacements compared to the C atoms.Comment: 4 pages, 4 figure
Prototype tests for the ALICE TRD
A Transition Radiation Detector (TRD) has been designed to improve the
electron identification and trigger capability of the ALICE experiment at the
Large Hadron Collider (LHC) at CERN. We present results from tests of a
prototype of the TRD concerning pion rejection for different methods of
analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the
performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging
Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS),
Latex (IEEEtran.cls), 7 pages, 11 eps figure
Qualitative modelling and analysis of regulations in multi-cellular systems using Petri nets and topological collections
In this paper, we aim at modelling and analyzing the regulation processes in
multi-cellular biological systems, in particular tissues.
The modelling framework is based on interconnected logical regulatory
networks a la Rene Thomas equipped with information about their spatial
relationships. The semantics of such models is expressed through colored Petri
nets to implement regulation rules, combined with topological collections to
implement the spatial information.
Some constraints are put on the the representation of spatial information in
order to preserve the possibility of an enumerative and exhaustive state space
exploration.
This paper presents the modelling framework, its semantics, as well as a
prototype implementation that allowed preliminary experimentation on some
applications.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates
We study soliton solutions for the Gross--Pitaevskii equation of the spinor
Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses
are made in two ways: by assuming single-mode amplitudes and by generalizing
Hirota's direct method for multi-components. We obtain one-solitons of
single-peak type in the ferromagnetic, polar and cyclic states, respectively.
Moreover, twin-peak type solitons both in the ferromagnetic and the polar state
are found.Comment: 15 pages, 8 figure
- …