54 research outputs found

    Status report of the NA48 experiment at the CERN SPS

    Get PDF
    The aim of the NA48 experiment at the CERN SPS is to measure direct CP violation in neutral kaon decays thus determining the parameter ϵ′/ϵ\epsilon'/\epsilon with an accuracy of 2×10−42\times 10^{-4}. The advantages of NA48 with respect to previous experiments are high statistics and reduced systematic effects. The principle of the experiment and the performance of the detector components are presented.Comment: To appear in the procs of the 6th Conf. on the Intersection of Particle and Nuclear Physics, Big Sky, Montana (CIPANP97); 7 pages including 3 figure

    Dosimetric characterization with 62 MeV protons of a silicon-segmented detector for 2D dose verifications in radiotherapy

    Get PDF
    Abstract Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications

    2D dosimeter based on monolithic silicon sensors for beam verification in conformal radiotherapy

    Get PDF
    Due to the features of modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy (IMRT), Stereotactic Treatments with photons and proton therapy, where high spatial dose gradient are often present, detectors to be employed for two-dimensional dose verifications must satisfy narrow requirements. In particular, they have to exhibit high spatial resolution. For these applications, in the framework of the European Integrated project MAESTRO (LSHC-CT-2004-503564) and of the INFN experiment PRIMA, we designed a modular system based on a monolithic silicon segmented sensor. A single sensor has been coupled with readout electronics and tested with satisfactory results by using 6, 10 and 25MV X-rays from a LINAC at the University Hospital of Florence and 62MeV protons at INFN LNS Catania, following MAESTRO procedures. For photons, almost all the channels exhibit performances within project specifications (repeatability ≪0.5%, reproducibility ≪1%, deviation from linearity ≪1%, dose rate dependence ≪1%). For protons, the measured Spread Out Bragg Peak is in good agreement with the one measured with a single diode and the detector shows also a good linearity in the range 20–5000 cGy. The output factors are in agreement with those measured with ionization chamber, single diode or film, within experimental errors
    • …
    corecore