28 research outputs found

    Potential clinical impact of T-cell lymphocyte kinetics monitoring in patients with B cell precursors acute lymphoblastic leukemia treated with blinatumomab: a single-center experience

    Get PDF
    Blinatumomab is a bispecific anti-CD3 and anti-CD19 antibody that acts as a T-cell engager: by binding CD19+ lymphoblasts, blinatumomab recruits cytotoxic CD3+ T-lymphocytes to target the cancer cells. Here we describe seven different patients affected by B-cell precursor acute lymphoblastic leukemia (Bcp-ALL) and treated with blinatumomab, on which we evaluated the potential association between the amount of different T-cells subsets and deep molecular response after the first cycle, identified as a complete remission in the absence of minimal residual disease (CR/MRD). The immune-system effector cells studied were CD3+, CD4+ effector memory (T4-EM), CD8+ effector memory (T8-EM), and T-regulatory (T-reg) lymphocytes, and myeloid-derived suppressor cells (MDSC). Measurements were performed in the peripheral blood using flow cytometry of the peripheral blood at baseline and after the first cycle of blinatumomab. The first results show that patients with a higher proportion of baseline T-lymphocytes achieved MRD negativity more frequently with no statistically significant difference (p=0.06) and without differences in the subpopulation count following the first treatment. These extremely preliminary data could potentially pave the way for future studies, including larger and less heterogeneous cohorts, in order to assess the T-cell kinetics in a specific set of patients with potential synergy effects in targeting myeloid-derived suppressor cells (MDSC), commonly known to have an immune evasion mechanism in Bcp-ALL

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    Smoking status during first-line immunotherapy and chemotherapy in NSCLC patients: A case–control matched analysis from a large multicenter study

    Get PDF
    Background: Improved outcome in tobacco smoking patients with non-small cell lung cancer (NSCLC) following immunotherapy has previously been reported. However, little is known regarding this association during first-line immunotherapy in patients with high PD-L1 expression. In this study we compared clinical outcomes according to the smoking status of two large multicenter cohorts. Methods: We compared clinical outcomes according to the smoking status (never smokers vs. current/former smokers) of two retrospective multicenter cohorts of metastatic NSCLC patients, treated with first-line pembrolizumab and platinum-based chemotherapy. Results: A total of 962 NSCLC patients with PD-L1 expression ≥50% who received first-line pembrolizumab and 462 NSCLC patients who received first-line platinum-based chemotherapy were included in the study. Never smokers were confirmed to have a significantly higher risk of disease progression (hazard ratio [HR] = 1.49 [95% CI: 1.15–1.92], p = 0.0022) and death (HR = 1.38 [95% CI: 1.02–1.87], p = 0.0348) within the pembrolizumab cohort. On the contrary, a nonsignificant trend towards a reduced risk of disease progression (HR = 0.74 [95% CI: 0.52–1.05], p = 0.1003) and death (HR = 0.67 [95% CI: 0.45–1.01], p = 0.0593) were reported for never smokers within the chemotherapy cohort. After a random case–control matching, 424 patients from both cohorts were paired. Within the matched pembrolizumab cohort, never smokers had a significantly shorter progression-free survival (PFS) (HR = 1.68 [95% CI: 1.17–2.40], p = 0.0045) and a nonsignificant trend towards a shortened overall survival (OS) (HR = 1.32 [95% CI: 0.84–2.07], p = 0.2205). On the contrary, never smokers had a significantly longer PFS (HR = 0.68 [95% CI: 0.49–0.95], p = 0.0255) and OS (HR = 0.66 [95% CI: 0.45–0.97], p = 0,0356) compared to current/former smoker patients within the matched chemotherapy cohort. On pooled multivariable analysis, the interaction term between smoking status and treatment modality was concordantly statistically significant with respect to ORR (p = 0.0074), PFS (p = 0.0001) and OS (p = 0.0020), confirming the significantly different impact of smoking status across the two cohorts. Conclusions: Among metastatic NSCLC patients with PD-L1 expression ≥50% receiving first-line pembrolizumab, current/former smokers experienced improved PFS and OS. On the contrary, worse outcomes were reported among current/former smokers receiving first-line chemotherapy

    Performance Analysis of the COSMO-CLM Model

    No full text
    COSMO-CLM is a non-hydrostatic parallel atmospheric model, developed by the CLM-Community starting from the Local Model (LM) of the German Weather Service. Since 2005, it is the reference model used by the german researchers for the climate studies on different temporal scales (from few to hundreds of years) with a spatial resolution from 1 up to 50 kilometers. It is also used and developed from other meteorological research centres belonging to the Consortium for Small-scale Modelling (COSMO). The present work is focused on the analysis of the CCLM model from the computational point of view. The main goal is to verify if the model can be optimised by means of an appropriate tuning of the input parameters, to identify the performance bottlenecks and to suggest possible approaches for a further code optimisation. We started analysing if the strong scalability (which measures the improvement factor due to the parallelism given a fixed domain size) can be improved acting on some parameters such as the subdomain shape, the number of processes dedicated to the I/O operations, the output frequency and the communication strategies. Then we profiled the code to highlight the bottlenecks to the scalability and finally we performed a detailed performance analysis of the main kernels using the roofline model

    Apulian Autochthonous Olive Germplasm: A Promising Resource to Restore Cultivation in <i>Xylella fastidiosa</i>-Infected Areas

    No full text
    The olive tree (Olea europaea subsp. europaea var. europaea) represents the cornerstone crop of Apulian agriculture, which is based on the production of oil and table olives. The high genetic variability of the Apulian olive germplasm is at risk of genetic erosion due to social, economic, and climatic changes. Furthermore, since 2013, the spread of the Gram-negative bacterium Xylella fastidiosa subsp. pauca responsible for the olive quick decline syndrome (OQDS) has been threatening olive biodiversity in Apulia, damaging the regional economy and landscape heritage. The aim of this study was to investigate the differential response to X. fastidiosa infection in a collection of 100 autochthonous Apulian olive genotypes, including minor varieties, F1 genotypes, and reference cultivars. They were genotyped using 10 SSR markers and grown for 5 years in an experimental field; then, they were inoculated with the bacterium. Symptom assessments and the quantification of bacterium using a qPCR assay and colony forming units (CFUs) were carried out three and five years after inoculation. The study allowed the identification of nine putatively resistant genotypes that represent a first panel of olive germplasm resources that are useful both for studying the mechanisms of response to the pathogen and as a reserve for replanting in infected areas

    The Role of Cytokinome in the HNSCC Tumor Microenvironment: A Narrative Review and Our Experience

    No full text
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer. In locally advanced (LA) HNSCC, a multidisciplinary approach consisting of surgery followed by chemoradiation (CRT) or definitive CRT is the mainstay of treatment. In recurrent metastatic (R/M), HNSCC immune checkpoint inhibitors (ICIs) with or without chemotherapy represent the new first-line option. However, cancer will recur in about two out of five patients with LA HNSCC. If progression occurs within six months from platin-radiotherapy treatment, anti-programmed cell death-1 (PD-1) may be prescribed. Otherwise, immunotherapy with or without chemotherapy might be considered if PD-L1 is expressed. Despite several improvements in the outcome of patients with R/M HNSCC, overall survival (OS) remains dismal, equaling a median of 14 months. In-depth knowledge of the tumor microenvironment (TME) would be required to change the course of this complex disease. In recent years, many predictive and prognostic biomarkers have been studied in the HNSCC TME, but none of them alone can select the best candidates for response to ICIs or targeted therapy (e.g., Cetuximab). The presence of cytokines indicates an immune response that might occur, among other things, after tumor antigen recognition, viral and bacterial infection, and physic damage. An immune response against HNSCC results in the production of some cytokines that induce a pro-inflammatory response and attract cells, such as neutrophils, macrophages, and T cell effectors, to enhance the innate and adaptive anti-tumor response. We revised the role of a group of cytokines as biomarkers for treatment response in HNSCC

    The Italian project for a proton imaging device

    No full text
    Proton Computed Tomography (or pCT) is a new imaging technique based on the use of high energy proton beams (200–250 MeV) replacing of the commonly adopted X-rays CT. pCT that was firstly proposed in the 1960s but only nowadays, with the continued establishing of new proton therapy centers around the world, the interest in it is growing. The use of protons for tomographic images can represent, in fact, a big enhancement in the quality of a proton therapy treatment either in the patient positioning as well as in the accuracy of the dose calculation for the treatment planning phase. In this paper, after a brief introduction on pCT principles, the main hardware and software characteristics of a first pCT prototype in development by our group (the Italian PRIMA collaboration) will be presented. The role of Monte Carlo simulation in developing will be also emphasized, using the GEANT4 simulation toolkit
    corecore