1,584 research outputs found
"Spin-Disentangled" Exact Diagonalization of Repulsive Hubbard Systems: Superconducting Pair Propagation
By a novel exact diagonalization technique we show that bound pairs propagate
between repulsive Hubbard clusters in a superconducting fashion. The size of
the matrices that must be handled depends on the number of fermion
configurations {\em per spin}, which is of the order of the square root of the
overall size of the Hilbert space. We use CuO units connected by weak O-O
links to model interplanar coupling and c-axis superconductivity in Cuprates.
The numerical evidence on CuO and CuO prompts a new
analytic scheme describing the propagation of bound pairs and also the
superconducting flux quantization in a 3-d geometry.Comment: 5 pages, 3 figure
Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach
We propose a computationally simple model of Auger and APECS line shapes from
open-band solids. Part of the intensity comes from the decay of unscreened
core-holes and is obtained by the two-body Green's function ,
as in the case of filled bands. The rest of the intensity arises from screened
core-holes and is derived using a variational description of the relaxed ground
state; this involves the two-holes-one-electron propagator , which
also contains one-hole contributions. For many transition metals, the two-hole
Green's function can be well described by the Ladder
Approximation, but the three-body Green's function poses serious further
problems. To calculate , treating electrons and holes on equal
footing, we propose a practical approach to sum the series to all orders. We
achieve that by formally rewriting the problem in terms of a fictitious
three-body interaction. Our method grants non-negative densities of states,
explains the apparent negative-U behavior of the spectra of early transition
metals and interpolates well between weak and strong coupling, as we
demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text
with epsfig.sty and float.sty, submitted to Phys. Rev.
Antiferromagnetism of the 2D Hubbard Model at Half Filling: Analytic Ground State at Weak Coupling
We introduce a local formalism to deal with the Hubbard model on a N times N
square lattice (for even N) in terms of eigenstates of number operators, having
well defined point symmetry. For U -> 0, the low lying shells of the kinetic
energy are filled in the ground state. At half filling, using the 2N-2 one-body
states of the partially occupied shell S_{hf}, we build a set of (2N-2 N-1)^{2}
degenerate unperturbed ground states with S_{z}=0 which are then resolved by
the Hubbard interaction \hat{W}=U\sum_{r}\hat{n}_{r\ua}\hat{n}_{r\da}. In
S_{hf} we study the many-body eigenstates of the kinetic energy with vanishing
eigenvalue of the Hubbard repulsion (W=0 states). In the S_{z}=0 sector, this
is a N times degenerate multiplet. From the singlet component one obtains the
ground state of the Hubbard model for U=0^{+}, which is unique in agreement
with a theorem by Lieb. The wave function demonstrates an antiferromagnetic
order, a lattice step translation being equivalent to a spin flip. We show that
the total momentum vanishes, while the point symmetry is s or d for even or odd
N/2, respectively.Comment: 13 pages, no figure
Electronic screening and correlated superconductivity in carbon nanotubes
A theoretical analysis of the superconductivity observed recently in Carbon
nanotubes is proposed. We argue that ultra-small (diameter )
single wall carbon nanotubes (with transition temperature )
and entirely end-bonded multi-walled ones () can superconduct
by an electronic mechanism, basically the same in both cases. By a Luttinger
liquid -like approach, one finds enhanced superconducting correlations due to
the strong screening of the long-range part of the Coulomb repulsion. Based on
this finding, we perform a detailed analysis on the resulting
Hubbard-like model, and calculate transition temperatures of the same order
of magnitude as the measured ones.Comment: 6 pages, 1 figure, PACS: 71.10.Pm,74.50.+r,71.20.Tx, to appear in
Phys. Rev.
Time-dependent transport in graphene nanoribbons
We theoretically investigate the time-dependent ballistic transport in
metallic graphene nanoribbons after the sudden switch-on of a bias voltage .
The ribbon is divided in three different regions, namely two semi-infinite
graphenic leads and a central part of length , across which the bias drops
linearly and where the current is calculated. We show that during the early
transient time the system behaves like a graphene bulk under the influence of a
uniform electric field . In the undoped system the current does not grow
linearly in time but remarkably reaches a temporary plateau with dc
conductivity , which coincides with the minimal
conductivity of two-dimensional graphene. After a time of order
( being the Fermi velocity) the current departs from the first plateau
and saturates at its final steady state value with conductivity
typical of metallic nanoribbons of finite width.Comment: 5 pages, 5 figure
Pairing in Cu-O Models: Clues of Joint Electron-Phonon and Electron-Electron Interactions
We discuss a many-electron Hamiltonian with Hubbard-like repulsive
interaction and linear coupling to the phonon branches, having the Cu-O plane
of the superconducting cuprates as a paradigm. A canonical transformation
extracts an effective two-body problem from the many-body theory. As a
prototype system we study the \cu cluster, which yields electronic pairing in
the Hubbard model; moreover, a standard treatment of the Jahn-Teller effect
predicts distortions that destroy electronic pairing. Remarkably, calculations
that keep all the electronic spectrum into account show that vibrations are
likely to be synergic with electronic pairing, if the coupling to
half-breathing modes predominates, as experiments suggest.Comment: 4 pages, 3 figures, accepted by Phys. Rev.
W=0 Pairing in Carbon Nanotubes away from Half Filling
We use the Hubbard Hamiltonian on the honeycomb lattice to represent the
valence bands of carbon single-wall nanotubes. A detailed symmetry
analysis shows that the model allows W=0 pairs which we define as two-body
singlet eigenstates of with vanishing on-site repulsion. By means of a
non-perturbative canonical transformation we calculate the effective
interaction between the electrons of a W=0 pair added to the interacting ground
state. We show that the dressed W=0 pair is a bound state for resonable
parameter values away from half filling. Exact diagonalization results for the
(1,1) nanotube confirm the expectations. For nanotubes of length ,
the binding energy of the pair depends strongly on the filling and decreases
towards a small but nonzero value as . We observe the existence
of an optimal doping when the number of electrons per C atom is in the range
1.21.3, and the binding energy is of the order of 0.1 1 meV.Comment: 16 pages, 6 figure
A theoretical investigation of nuclear reactions with neutrons
A theory of the interaction of neutrons with complex nuclei is developed with the aim of obtaining a cross-section averaged over the resonances, to be compared with the results of the phenomenological model proposed byFeshbach, Porter andWeisskopf (2). It is shown what kind of assumptions have to be introduced in order that the compound nucleus formation give rise to an absorption of the incident beam, irrespective of what happens after the compound nucleus decay. The problem is reduced to the determination of the complex index of refraction of an indefinite nuclear matter, taking properly into account the effect of the Pauli principle. Subsequently this index of refraction has to be introduced into a one-body Schrodinger equation with the correct boundary conditions at the nuclear wall. By assuming nuclear forces which fit the low energy two-body data, and an average binding energy of 8 MeV per nucleon, an expression is derived for the absorption coefficient which is compared with the imaginary part of the FPW potential. At zero energy the absorption coefficient is just in the right range 0.03–0.05. For higher energies it becomes so large that already for 6–8 MeV the absorption is almost complete for medium sized nuclei. This agrees quite satisfactorily with experimental evidence
W=0 pairing in Hubbard and related models of low-dimensional superconductors
Lattice Hamiltonians with on-site interaction have W=0 solutions, that
is, many-body {\em singlet} eigenstates without double occupation. In
particular, W=0 pairs give a clue to understand the pairing force in repulsive
Hubbard models. These eigenstates are found in systems with high enough
symmetry, like the square, hexagonal or triangular lattices. By a general
theorem, we propose a systematic way to construct all the W=0 pairs of a given
Hamiltonian. We also introduce a canonical transformation to calculate the
effective interaction between the particles of such pairs. In geometries
appropriate for the CuO planes of cuprate superconductors, armchair
Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound
state in a physically relevant range of parameters. We also show that W=0 pairs
quantize the magnetic flux like superconducting pairs do. The pairing mechanism
breaks down in the presence of strong distortions. The W=0 pairs are also the
building blocks for the antiferromagnetic ground state of the half-filled
Hubbard model at weak coupling. Our analytical results for the
Hubbard square lattice, compared to available numerical data, demonstrate that
the method, besides providing intuitive grasp on pairing, also has quantitative
predictive power. We also consider including phonon effects in this scenario.
Preliminary calculations with small clusters indicate that vector phonons
hinder pairing while half-breathing modes are synergic with the W=0 pairing
mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed
Matte
- …