595 research outputs found

    Foodborne urinary tract infections: A new paradigm for antimicrobial-resistant foodborne illness

    Get PDF
    Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Disproportionately affecting women, UTIs exact a substantial public burden each year in terms of direct medical expenses, decreased quality of life, and lost productivity. Increasing antimicrobial resistance among strains of extraintestinal pathogenic Escherichia colichallenges successful treatment of UTIs. Community-acquired UTIs were long considered sporadic infections, typically caused by the patients’ native gastrointestinal microbiota; however, the recent recognition of UTI outbreaks with probable foodborne origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift come new opportunities to disrupt the infection process and possibly quell increasing resistance, including the elimination of non-therapeutic antimicrobial use in food-animal production

    NailO: Fingernails as an Input Surface

    Get PDF
    We present NailO, a nail-mounted gestural input surface. Using capacitive sensing on printed electrodes, the interface can distinguish on-nail finger swipe gestures with high accuracy (>92%). NailO works in real-time: we miniaturized the system to fit on the fingernail, while wirelessly transmitting the sensor data to a mobile phone or PC. NailO allows one-handed and always-available input, while being unobtrusive and discrete. Inspired by commercial nail stickers, the device blends into the user's body, is customizable, fashionable and even removable. We show example applications of using the device as a remote controller when hands are busy and using the system to increase the input space of mobile phones

    Antibiotic-resistant Escherichia Coli from Retail Poultry Meat with Different Antibiotic Use Claims

    Get PDF
    Background We sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, “raised without antibiotics”, and conventional. Results We collected all available brands of retail chicken and turkey—including conventional, “raised without antibiotic”, and organic products—every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested—and multidrug resistance—among isolates from conventional turkey products when compared to those labelled organic or “raised without antibiotics”. E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category. Conclusion The high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to “raised without antibiotics” and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use

    Colonizing opportunistic pathogens (COPs): The beasts in all of us.

    Get PDF
    Colonizing opportunistic pathogens (COPs) are microbes that asymptomatically colonize the human body and, when the conditions are right, can cause infections. Their ability to persist indefinitely and to be transmitted without detection [1] gives COPs a unique epidemiology that warrants special consideration. There are examples of COPs among bacteria, fungi (e.g., Candida albicans [2]), protozoa (e.g., Blastocystis [3, 4]), and viruses (e.g., Rhinovirus [5]), but bacterial COPs are of particular relevance because of their major contribution to today’s antibiotic resistance crisis. The COPs include a long list of notorious bacteria that live double lives as passive stowaways and virulent foes. Some of the best-known COPs include Staphylococcus aureus, extraintestinal pathogenic Escherichia coli (ExPEC), Klebsiella pneumoniae, and Streptococcus pneumoniae (Table 1). Their capacity for benign coexistence with humans belies their alter egos that exact a heavy burden of human disease. For example, in the United States, ExPEC bloodstream infections kill as many as 40,000 people annually [6], but, ExPEC are also benign colonizers in the gastrointestinal tract [7]. Host factors, including age, sex, health status, anatomy, and behavior, all play profound roles in infection susceptibility and severity [8–10]. In particular, immunocompromised individuals are at excess risk for infections caused by diverse bacteria, including COPs [11, 12] and even commensals. Yet, health status is not the sole determinant of infection by COPs. For example, healthy women more frequently suffer from urinary tract infections than men because of anatomical differences, including shorter urethrae. Likewise, healthy children more commonly suffer from acute otitis media than adults due to their shorter, flatter eustachian tubes [13]

    Penile Microbiota and Female Partner Bacterial Vaginosis in Rakai, Uganda

    Get PDF
    Bacterial vaginosis (BV) is a common vaginal bacterial imbalance associated with risk for HIV and poor gynecologic and obstetric outcomes. Male circumcision reduces BV-associated bacteria on the penis and decreases BV in female partners, but the link between penile microbiota and female partner BV is not well understood. We tested the hypothesis that having a female partner with BV increases BV-associated bacteria in uncircumcised men. We characterized penile microbiota composition and density (i.e., the quantity of bacteria per swab) by broad-coverage 16S rRNA gene-based sequencing and quantitative PCR (qPCR) in 165 uncircumcised men from Rakai, Uganda. Associations between penile community state types (CSTs) and female partner’s Nugent score were assessed. We found seven distinct penile CSTs of increasing density (CST1 to 7). CST1 to 3 and CST4 to 7 were the two major CST groups. CST4 to 7 had higher prevalence and abundance of BV-associated bacteria, such as Mobiluncus and Dialister, than CST1 to 3. Men with CST4 to 7 were significantly more likely to have a female partner with a high Nugent score (P = 0.03). Men with two or more extramarital partners were significantly more likely to have CST4 to 7 than men with only marital partners (CST4 to 7 prevalence ratio, 1.84; 95% confidence interval [CI], 1.16 to 2.92). Female partner Nugent BV is significantly associated with penile microbiota. Our data support the exchange of BV-associated bacteria through intercourse, which may explain BV recurrence and persistence. IMPORTANCE Bacterial vaginosis (BV) is sexually associated but not considered a sexually transmitted disease. Our findings suggest that the uncircumcised penis is an important niche for BV-associated genital anaerobes. In addition, we found a link between extramarital sexual relationships and BV-associated bacteria in men, which parallels earlier findings of the association between sexual activity and BV in women. This suggests the sexual transmissibility of BV-associated bacteria. Reducing bacterial exchange by barrier methods and managing carriage of BV-associated bacteria in men may decrease BV persistence and recurrence in women

    Doped graphene nanohole arrays for flexible transparent conductors

    Get PDF
    Graphene nanohole arrays (GNAs) were fabricated using nanoimprint lithography. The improved optical transmittance of GNAs is primarily due to the reduced surface coverage of graphene from the nanohole fabrication. Importantly, the exposed edges of the nanoholes provided effective sites for chemical doping using thionyl chloride was shown to enhance the conductance by a factor of 15–18 in contrast to only 2-4 for unpatterned graphene. GNAs can provide a unique scheme for improving both optical transmittance and electrical conductivity of graphene-based transparent conductors

    <i>Staphylococcus aureus</i> and the ecology of the nasal microbiome

    No full text
    The human microbiome can play a key role in host susceptibility to pathogens, including in the nasal cavity, a site favored by Staphylococcus aureus. However, what determines our resident nasal microbiota—the host or the environment—and can interactions among nasal bacteria determine S. aureus colonization? Our study of 46 monozygotic and 43 dizygotic twin pairs revealed that nasal microbiota is an environmentally derived trait, but the host’s sex and genetics significantly influence nasal bacterial density. Although specific taxa, including lactic acid bacteria, can determine S. aureus colonization, their negative interactions depend on thresholds of absolute abundance. These findings demonstrate that nasal microbiota is not fixed by host genetics and opens the possibility that nasal microbiota may be manipulated to prevent or eliminate S. aureus colonization

    Rheb1 mediates DISC1-dependent regulation of new neuron development in the adult hippocampus

    Get PDF
    Acknowledgments: We thank D. Weinberger, D. St. Clair and D. Valle for discussion, Jaden Shin for gene expression analyses, members of Ming and Song Laboratories for help and critical comments, L. Liu, Y. Cai, Q. Hussaini, and M. Jardine-Alborz for technical support. Funding: This work was supported by NIH (NS048271, MH105128), NARSAD, and MSCRF to G-l.M., by NIH (NS047344 and NS093772) and MSCRF to H.S., by NARSAD and NIH (NS093772) to K.C., and by NARSAD to E.K.Peer reviewedPublisher PD
    • 

    corecore