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Urinary tract infections (UTIs) are among the most common bacterial infections worldwide.
Disproportionately affecting women, UTIs exact a substantial public burden each year
in terms of direct medical expenses, decreased quality of life, and lost productivity.
Increasing antimicrobial resistance among strains of extraintestinal pathogenic Escherichia
coli challenges successful treatment of UTIs. Community-acquired UTIs were long
considered sporadic infections, typically caused by the patients’ native gastrointestinal
microbiota; however, the recent recognition of UTI outbreaks with probable foodborne
origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift
come new opportunities to disrupt the infection process and possibly quell increasing
resistance, including the elimination of non-therapeutic antimicrobial use in food-animal
production.
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INTRODUCTION
Public health concerns over the widespread non-therapeutic
use of antimicrobials in food-animal production (FAP) have
been voiced repeatedly since the 1960s, but little has been
done to address these concerns in the US (FDA, 2012a). While
some of the seminal research on the selection and transfer of
antibiotic-resistant bacteria from food-animals to humans was
conducted on Escherichia coli (Levy, 1978), the public health
burden has largely been measured based on the classic food-
borne pathogens, Campylobacter and Salmonella. However, today,
we recognize that there is also frequent zoonotic transfer of
antibiotic-resistant Staphylococcus aureus and E. coli from food
animals to humans, and we must consider these events when
attempting to quantify the full impact of antimicrobial use
in FAP.

Traditionally, foodborne infections were limited to those affect-
ing the gastrointestinal tract, but a growing number of studies
linking foodborne E. coli with urinary tract infections (UTIs) chal-
lenge that narrow definition and have led us to adopt the term:
foodborne UTI or FUTI |foō-tē|. In this mini-review, we discuss
the predominant role and public health burden of E. coli in UTIs;
the growing challenge of antimicrobial resistance to the success-
ful treatment of UTIs; how the recognition of UTI outbreaks has
spurred renewed interest in the role of foodborne E. coli in human
disease; and the ramifications of the FUTI paradigm on antibiotic
use policy in FAP.

THE PUBLIC HEALTH BURDEN OF URINARY TRACT
INFECTIONS
Urinary tract infections are the most common bacterial infections
in the developed world, and among infections, only upper res-
piratory infections account for more hospitalizations each year
(Mazzulli, 2002; Russo and Johnson, 2003). All ages are affected
by UTIs and pediatric cases account for over a million office visits
and 500,000 emergency-department visits per year (Spencer et al.,
2010). Due to anatomical differences and the hormonal milieu of
the urinary tract, women are significantly more likely than men to
develop a UTI, and nearly half of all women will have a UTI dur-
ing their lifetime (Foxman, 2003). When taking into account all
age groups, the annual number of uncomplicated UTI cases is 6–8
million in the US and 130–175 million worldwide, and the vast
majority of these cases are caused by E. coli (Russo and Johnson,
2003). The resultant costs associated with community-acquired
UTI in the US approach $1.5 billion (Foxman, 2003).

Most cases of UTIs only involve the bladder (i.e., cystitis or
lower UTIs) and resolve without sequelae; however, the infec-
tion can ascend to infect the kidney (i.e., pyelonephritis or upper
UTI; Scholes et al., 2005). Although less frequent than cysti-
tis, pyelonephritis affects approximately 250,000 individuals in
the US each year (Russo and Johnson, 2003). Repeated cases of
pyelonephritis, particularly in children, can cause scarring of the
kidneys, leading to renal hypertension and even kidney failure later
in life (Orellana et al., 2004).
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Bloodstream infections originating in the urinary tract
(urosepsis) are common and serious complications of UTIs.
Urosepsis is more common in nosocomial UTIs (up to 12%
of all nosocomial cases), but community-acquired urosepsis –
particularly from antimicrobial-resistant E. coli – is occurring
with increasing frequency (Rodriguez-Bano et al., 2006; Lee et al.,
2012). The timely treatment of urosepsis is critical to reducing
mortality, but the increasing prevalence of antibiotic-resistant
E. coli limits clinical options and delays appropriate therapy
(Rodriguez-Bano et al., 2010).

ANTIMICROBIAL RESISTANCE IN E. coli, THE MAJOR
UROPATHOGEN
Escherichia coli is the single most common uropathogen, causing
75–95% of all uncomplicated cystitis and pyelonephritis cases in
the United States (Hooton, 2012). The E. coli strains that cause
UTIs are known as extraintestinal pathogenic E. coli (ExPEC)
and are genotypically and phenotypically distinct from non-
pathogenic commensal E. coli and from diarrheagenic E. coli,
which cause gastrointestinal infections (Johnson, 1991; Russo
and Johnson, 2000). While ExPEC can colonize the human gas-
trointestinal tract similar to other E. coli, they are uniquely
associated with infections outside of the gut, including: menin-
gitis (Kim, 2012), osteomyelitis (Johnson and Russo, 2002; Lee
et al., 2010), peritonitis (Bert et al., 2010), pneumonia (Johnson
et al., 2003), sepsis, and, as discussed, UTI. In contrast to the diar-
rheagenic E. coli subgroups, where antimicrobials have limited
utility, antimicrobials are critical for treating ExPEC infections.

As a general rule, antibiotics are considered no longer effica-
cious once the prevalence of resistance reaches 20% in a given
population (Warren et al., 1999; Gupta et al., 2011). Thus, the gen-
eral rise in antimicrobial-resistant and multidrug-resistant (MDR)
E. coli worldwide has made clinical management of UTIs much
more challenging (Smith et al., 2008; Johnson et al., 2009; Bahadin
et al., 2011; Bosch et al., 2011; Okesola and Aroundegbe, 2011;
Cullen et al., 2012). A survey of 1,729 human and food-animal E.
coli isolates from 1950 to 2002 showed the overall MDR preva-
lence increased from 7.2% in the 1950s to 63.6% in the early 2000s
(Tadesse et al., 2012). This increase was particularly marked among
the food-animal isolates, which showed significant increases in
resistance against 11 out of 15 antimicrobials tested, includ-
ing ampicillin, trimethoprim-sulfamethoxazole (TMP-SMZ),
cefoxitin, gentamicin, and amoxicillin/clavulanic acid (Tadesse
et al., 2012).

The increasing challenge of antimicrobial resistance is epit-
omized by the global increase in E. coli that possess extended-
spectrum beta-lactamases (ESBLs), a suite of enzymes that confer
resistance to cephalosporins and monobactams (Woodford et al.,
2004; Nicolas-Chanoine et al., 2008; Hoban et al., 2011; Johnson
et al., 2012; Matsumura et al., 2012). In E. coli, ESBL genes are
typically found on mobile genetic elements, which facilitate the
carriage, accumulation, and transfer of antimicrobial-resistance
genes. This is well illustrated by the ST131 clonal group – one
of the most clinically important ExPEC lineages – that carries
ESBL genes within transposon-like structures encoded on mobi-
lizable plasmids (Peirano and Pitout, 2010; Canton et al., 2012;
Matsumura et al., 2012). Additional antimicrobial resistance genes

often co-localize on these plasmids, including elements conferring
resistance to fluoroquinolones, aminoglycosides, and TMP-SMZ
(Johnson et al., 2010; Pitout, 2012).

Another important mechanism facilitating the increase in
antimicrobial-resistant UTIs is the introduction and clonal expan-
sion of competitive, resistant E. coli strains in the community.
These events appear to contribute more to the resistant UTI
burden than de novo selection of resistant strains through clin-
ical antimicrobial use (Smith et al., 2008). A longitudinal study
of antimicrobial-resistant E. coli revealed that resistant popula-
tions were comprised of relatively few E. coli clonal groups and
not the diverse population that would be expected from fre-
quent de novo selection. In this study and others, the cessation
of TMP-SMZ use did not decrease TMP-SMZ resistance; further
suggesting that clinical antimicrobial use is not the sole driver of
antimicrobial-resistant E. coli UTIs (Enne et al., 2001; Smith et al.,
2008; Sundqvist et al., 2010).

Although the molecular and epidemiological mechanisms for
the amplification of antimicrobial-resistant UTIs are complex,
antimicrobial resistance in E. coli has largely followed antimicro-
bial use trends in human medicine and animal production, and
with that, the clinical community has seen the loss of multiple
antimicrobial classes against E. coli (Warren et al., 1999; Gupta
et al., 2011). Tetracycline was introduced to clinical medicine in
1948 and served as a first-line therapy for UTIs until growing
resistance gradually reduced its utility (Datta et al., 1971). Ampi-
cillin was routinely used to treat UTIs after being introduced in
1961, but it also fell from favor due to exceedingly high resistance
rates (NARMS, 2010). In 1999, the Infectious Disease Society of
America (IDSA) declared ampicillin and amoxicillin unsuitable
for treating UTI due to poor efficacy (Warren et al., 1999). Sim-
ilarly, the emergence of fluoroquinolone-resistant E. coli is now
limiting the utility of fluoroquinolones for treating patients with
UTIs (Wang et al., 2001; Zervos et al., 2003; Christiansen et al.,
2011; Kamenski et al., 2012; Longhi et al., 2012).

The increase in antimicrobial resistant UTIs in the commu-
nity setting has also added caveats to standard clinical practice
guidelines. The 2011 IDSA recommendation indicated that nitro-
furantoin or TMP-SMZ should be used as first line treatments for
uncomplicated UTI; however, the statement was issued with the
qualification that TMP-SMZ should not be used if local resistance
rates exceed 20% (Gupta et al., 2011). Indeed, many clinicians now
rely almost exclusively on nitrofurantoin due to the growing TMP-
SMZ resistance (Manges et al., 2001; Burman et al., 2003; France
et al., 2005; Hooton, 2012; Vellinga et al., 2012).

DISCOVERY OF UTI OUTBREAKS
Historically, UTIs were considered sporadic infections, but we now
recognize that UTIs can also occur in outbreaks. In 2010, George
and Manges (2010) conducted a systematic review of outbreak
and non-outbreak studies involving E. coli. From 1950 to July of
2009, 12 E. coli UTI outbreaks were identified, with the first out-
break reported in 1986 and the latest in 2008. Nine of these 12
outbreaks occurred in Europe, including two in the UK (Phillips
et al., 1988; Woodford et al., 2004), three in Spain (Prats et al., 2000;
Oteo et al., 2006; Blanco et al., 2009), and one each in Denmark
(Olesen et al., 1994), Portugal (Mendonca et al., 2007), and Croatia
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(Vranes et al., 2008). Three other outbreaks were reported in North
America, with two in the US (Kunin et al., 1993; Manges et al.,
2001) and one in Canada (Pitout et al., 2005). Although most out-
breaks were limited to upper and lower UTIs, other infections were
also reported, including urosepsis (Phillips et al., 1988; Woodford
et al., 2004; Pitout et al., 2005; Oteo et al., 2006; Mendonca et al.,
2007). These outbreaks were first recognized as temporal clus-
ters based on susceptibility profiles, but the clonality of the E. coli
isolates was not established until later using molecular analyses.
Since most UTI E. coli isolates are not genotyped, the true inci-
dence of UTI outbreaks is likely to be substantially under-reported
(Stamm, 2001).

The definitive sources for these reported UTI outbreaks remain
largely unknown. In some cases, outbreaks were postulated to have
healthcare origins (Oteo et al., 2006; Mendonca et al., 2007; Wood-
ford et al., 2007). In other cases imprudent antibiotic prescribing
patterns in the community and lack of patient compliance were
postulated (Oteo et al., 2006; Mendonca et al., 2007). However,
the phenotypic and genotypic similarities of the causative E. coli
strains is inconsistent with de novo selection, and, instead, sug-
gest common point sources, such as contaminated food products
(Olesen et al., 1994; Manges et al., 2001, 2008; Pitout et al., 2005).

HUMAN COLONIZATION AND INFECTION WITH
ANTIMICROBIAL-RESISTANT FOODBORNE E. coli
Antimicrobial-resistant E. coli from contaminated food can tran-
siently colonize the human gastrointestinal tract and create a
reservoir for subsequent infection (Bettelheim et al., 1977; Cor-
pet, 1988; Johnson et al., 2007). One study showed a significant
decrease in the concentration of tetracycline-resistant Enterobac-
teriaceae in participants’ stools after they switched from a normal
diet to one consisting solely of sterilized food (Corpet, 1988).
Another study, comparing human and poultry-associated E. coli,
showed that the antimicrobial-resistant E. coli isolates from human
subjects were genetically more similar to poultry isolates than to
the susceptible E. coli strains coexisting in their own gastroin-
testinal tracts. These studies suggest that handling or ingestion
of poultry was the primary source of resistant E. coli among the
human subjects (Johnson et al., 2007).

In 2010, the National Antimicrobial Resistance Monitoring
System (NARMS) reported that more than 75% of chicken and
turkey, 59% of ground beef, and 40% of pork products tested
in the US were contaminated with E. coli, and that a large por-
tion of this foodborne E. coli was MDR (NARMS, 2012). While
NARMS does not typically differentiate between pathogenic and
non-pathogenic E. coli as part of their retail meat program, a recent
study of E. coli from NARMS found that more than 20% of the
isolates from chicken and turkey products, 8.3% from pork chops,
and 3.4% from ground beef met the molecular criteria for ExPEC
(Xia et al., 2011). Many of these ExPEC were MDR and belonged
to the same phylogroups (B2 and D) as those most commonly
associated with extraintestinal human disease (Xia et al., 2011).

Similar genetic fingerprints have also been found between
temporally and geographically matched UTI cases and E. coli
from food (Johnson et al., 2007; Vincent et al., 2010). Specifically,
antimicrobial resistance and virulence gene profiles between phy-
logroup B2 E. coli from UTI cases were more closely related to E.

coli from food animals and retail meat than from healthy human
controls in Europe (Jakobsen et al., 2011). Another study from
Canada showed similar findings (Bergeron et al., 2012). Addition-
ally, clonal phylogroup D E. coli, which is frequently associated
with UTI, was shown to be more common among poultry products
than other types of meat (Vincent et al., 2010).

Other studies have shown that foodborne E. coli are not only
genetically related to those causing UTIs in humans, they are also
capable of causing UTIs in vivo (Jakobsen et al., 2010a,b). In a study
conducted by Jakobsen et al. (2010b), all 13 foodborne phylogroup
B2 E. coli strains tested in a murine UTI model led to lower UTIs
in the animals and nine of the isolates also caused pyelonephri-
tis. A similar investigation of 25 CgA isolates from poultry meat,
chickens, and humans showed that all CgA strains from meat or
food animals caused lower UTIs, and all but one of the isolates
produced kidney infections (Jakobsen et al., 2010a).

To determine whether meat and poultry consumption is associ-
ated with development of antibiotic-resistant UTIs, a case–control
study was initiated in which the dietary habits of women with
MDR UTIs were compared with women with antimicrobial-
susceptible UTIs (Manges et al., 2007). In this study, women
with MDR UTIs were 3.7 times more likely to report fre-
quent consumption of chicken, while those with ampicillin or
cephalosporin-resistant infections were more 3.2 times more likely
to report pork consumption (Manges et al., 2007).

FOODBORNE URINARY TRACT INFECTIONS: A NEW
PARADIGM
Taken together, the studies reviewed above provide compelling
evidence that retail meat, particularly poultry, serves as an impor-
tant reservoir for human exposure to antibiotic-resistant E. coli
that is causing UTIs. Thus, the term foodborne UTIs or FUTIs has
been adopted to describe these infections. The traditional mode
of foodborne diseases necessarily involves an infection or toxifica-
tion of the gastrointestinal tract; however, in FUTIs, the etiologic
agent causes no gastrointestinal pathologies. Likewise, with classic
foodborne infections, ingestion is the rate-limiting step: if a sus-
ceptible host consumes a sufficient dose of a pathogenic microbe,
disease will ensue. The FUTI model requires at least two steps: (1)
a susceptible host ingests a uropathogen and (2) an infectious dose
of the uropathogen is transferred from the host’s gastrointestinal
tract to his or her urinary tract. As shown above, the first step
appears to occur regularly in the community; therefore, the rate-
limiting step is expected to be the transfer of the uropathogen to
the urinary tract. Given these important distinctions, FUTIs repre-
sent a significant shift from the classic foodborne illness paradigm
and broadens the implications of antibiotic-resistant E. coli in the
food supply.

FUTIs AND ANTIMICROBIAL USE IN POULTRY PRODUCTION
Among the major meat producing species, chickens and turkey
appear to be the greatest source of human exposure to antibiotic-
resistant ExPEC, and this has important implications regarding
antimicrobial use in poultry production. In the US, antimicro-
bials are administered to poultry as feed and water additives
as well as chick and egg (in ovo) injections. Even antimi-
crobials considered critical for human health and treatment
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of Gram-negative extraintestinal diseases have been used for
routine, non-therapeutic purposes in broiler chickens in the
US and Canada. For example, day-old chicks and poultry
eggs are routinely injected with aminoglycosides (gentamicin)
and third-generation cephalosporins (ceftiofur), which has been
directly associated with cephalosporin-resistant foodborne infec-
tions (Dutil et al., 2010). Given the strong evidence for FUTIs, the
critical nature of antimicrobial therapy for treating UTIs, and the
clear links between antimicrobial use in FAP and the selection for
antimicrobial-resistant E. coli, a reevaluation of the antimicrobial
classes and antimicrobial applications permitted in this industry
is warranted.

There have been some recent, albeit minor, advancements in
US agricultural antimicrobial use policy. In 2012, the FDA released
new voluntary guidelines discouraging the use of antimicrobials
for growth promotion purposes and encouraging the inclusion
of veterinary oversight in the application of medically impor-
tant antimicrobials in food animals (FDA, 2012a). Unfortunately,
without any surveillance system in place to ensure compliance,
it will be difficult to know if these voluntary guidelines have
any positive impact. Likewise, in 2012 the FDA released a final
rule restricting extra-label uses of cephalosporins in food-animals,
including in ovo injection of poultry eggs (FDA, 2012b), but this
ruling does not ban the common practice of injecting day-old
chicks with cephalosporins. It is important to note that although
the US Department of Agriculture (USDA) prohibits the use of

antimicrobials in poultry sold under the USDA Organic label,
these regulations are only applied starting on day 2 of the ani-
mals’ life (USDA, 2012). This is an important loophole that may
diminish the distinction between the microbial quality of USDA
Organic and conventional products.

CONCLUSION
As described above, FUTIs represent a major paradigm shift in
our understanding of foodborne disease, but require additional
research to accurately quantify their contribution to antibiotic-
resistant UTIs in general. Of particular value would be studies
that integrate contemporaneous, geographically bounded sam-
pling of the foodborne and UTI E. coli isolates, advanced molecular
techniques to evaluate clonal and temporal relationships, and
detailed food consumption surveys from study participants. More
basic research could also reveal why ExPEC strains are more
prevalent among poultry species as compared to other food-
animal species and reveal new opportunities for interventions,
such as on-farm ExPEC vaccination programs. Likewise, FUTIs
and their potential impact on human health should be considered
when evaluating agricultural antibiotic use policies in the US and
abroad.
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