5 research outputs found

    Inner Ear Genes Underwent Positive Selection and Adaptation in the Mammalian Lineage

    Get PDF
    The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.Fil: Pisciottano, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Cinalli, Alejandro Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Stopiello, Juan Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Castagna, Valeria Carolina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Gomez Casati, Maria Eugenia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Franchini, Lucia Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Genetic bases of the evolution of the human brain: comparative study of the transcriptional regulation of the transcription factor npas3

    No full text
    Se ha propuesto que la divergencia fenotípica entre humanos y chimpancés se debe en gran medida a cambios en la regulación de genes que participan en el desarrollo en lugar de cambios en las secuencias codificantes de proteínas de los genes. Hipotetizamos que la explosión sin precedentes en el repertorio del comportamiento humano se debe a la adquisición de nuevos patrones de expresión de genes preexistentes. Previamente en nuestro laboratorio, se analizó la distribución en el genoma de secuencias genómicas no codificantes (denominados human accelerated elements, HAE) que muestran evidencia de evolución acelerada en el linaje humano (aumento en la tasa de sustitución de nucleótidos). Esto permitió identificar la agrupación más grande de HAEs en el genoma humano ubicada dentro del locus del gen que codifica para la proteína neuronal PAS domain-containing protein 3 (NPAS3). NPAS3 codifica un factor de transcripción bHLH-PAS que se expresa ampliamente en el sistema nervioso en desarrollo del ratón y de humano, y su disfunción se ha asociado con la etiología de la esquizofrenia y el síndrome bipolar en humanos. En el locus de este gen se agrupan 14 HAEs. En este trabajo, realizamos un ensayo comparativo utilizando las secuencias ortólogas de humano y de chimpancé, para determinar si los 14 elementos NPAS3-HAEs funcionan cómo activadores transcripcionales o enhancers en líneas de peces cebra y ratones transgénicos. Identificamos dos NPAS3-HAEs (HAR202 y HACNS658) en los que la versión humana perdió función cómo enhancer en comparación con la versión de chimpancé, que funciona como un fuerte enhancer durante el desarrollo del cerebro. Para determinar si la función enhancer se perdió en el linaje humano o lo que ocurrió fue una ganancia de función en el linaje de chimpancé, seleccionamos el elemento HAR202 y realizamos estudios comparativos con secuencias de mono macaco Rhesus, ratón y pez cebra. Encontramos que el elemento HAR202 perdió específicamente su función enhancer como consecuencia del proceso evolutivo en el linaje humano. Para analizar cuál es el efecto funcional de la perdida de HAR202 sobre la expresión del gen NPAS3 generamos III un linaje de ratones mutantes que carece de este elemento en el genoma. Además, identificamos un elemento regulatorio, HACNS96 que ganó función de activador transcripcional en el sistema nervioso central en el linaje humano. Por otra parte, ha sido ampliamente estudiada la función del gen NPAS3 en el desarrollo del cerebro y también en el desarrollo de las vías respiratorias. Sin embargo, ha sido postulado que este gen podría participar también en el desarrollo craneofacial ya que personas que presentan una deleción en su genoma que incluye al gen NPAS3 presentan holoprocensefalia. La holoprosencefalia (HPE) es la anomalía del desarrollo más común que afecta el patrón del prosencéfalo humano y las estructuras craneofaciales asociadas. Para investigar si npas3 está involucrado en el desarrollo de estructuras craneofaciales, realizamos estudios de genética molecular en el pez cebra. El análisis de npas3 de peces cebra mutantes nulos (knockout) y en los que se indujo una marcada reducción de la expresión (knockdown) reveló anormalidades craneofaciales críticas que indican que este gen desempeña un papel clave en el desarrollo de estas estructuras. Además, npas3 demostró ser esencial para el desarrollo del sistema nervioso y del sistema branquial en el pez cebra. Curiosamente, la ablación o reducción de npas3 afecta la expresión de sonic hedgehog (shha), un gen maestro del desarrollo que cuando se muta produce holoprocencefalia. Nuestros resultados sugieren el gen NPAS3 desempeña un papel en el desarrollo craneofacial.It has been proposed that the phenotypic divergence between humans and chimpanzees is largely due to changes in the regulation of genes involved in the development rather than changes in the protein coding sequences of the genes. We hypothesize that the explosion unprecedented in the repertoire of human behavior is due to the acquisition of new patterns of expression of pre-existing genes. Previously in our laboratory, the genome distribution of non-coding genomic sequences (called human accelerated elements, HAE) that show evidence of accelerated evolution in the human lineage (increase in the rate of nucleotide substitution) was analyzed. This allowed to identify the largest group of HAEs in the human genome located within the locus of the gene that codes for the neuronal protein PAS domain-containing protein 3 (NPAS3). NPAS3 encodes a transcription factor bHLH-PAS that is widely expressed in the developing nervous system of the mouse and human, and its dysfunction has been associated with the etiology of schizophrenia and bipolar syndrome in humans. In the locus of this gene, 14 HAEs are grouped. In this work, we conducted a comparative trial using the human and chimpanzee orthologous sequences, to determine if the 14 NPAS3-HAEs elements function as transcriptional activators or enhancers in lines of zebrafish and transgenic mice. We identified two NPAS3-HAEs (HAR202 and HACNS658) in which the human version lost function as an enhancer compared to the chimpanzee version, which functions as a strong enhancer during brain development. To determine if the enhancer function was lost in the human lineage or what happened was a gain of function in the chimpanzee lineage, we selected the HAR202 element and made comparative studies with sequences of Rhesus macaque, mouse and zebrafish monkey. We found that the HAR202 element specifically lost its enhancer function because of the evolutionary process in the human lineage. To analyze what is the functional effect of the loss of HAR202 on the expression of the NPAS3 gene, we generated a lineage of mutant mice lacking this element V in the genome. We also identified a regulatory element, HACNS96 that gained transcriptional activator function in the central nervous system in the human lineage. On the other hand, the role of the NPAS3 gene in the development of the brain and in the development of the respiratory tract has been widely studied. However, it has been postulated that this gene could also participate in the craniofacial development since people who present a deletion in their genome that includes the NPAS3 gene present holoprocensephaly. Holoprosencephaly (HPE) is the most common developmental anomaly that affects the pattern of the human forebrain and the associated craniofacial structures. To investigate if npas3 is involved in the development of cranio-facial structures, we conducted molecular genetic studies in zebrafish. The analysis of npas3 of zebrafish mutants’ nulls (knockout) and in which a marked reduction of expression was induced (knockdown) revealed critical skull-facial abnormalities that indicate that this gene plays a key role in the development of these structures. In addition, npas3 proved to be essential for the development of the nervous system and the branchial system in the zebrafish. Interestingly, the ablation or reduction of npas3 affects the expression of sonic hedgehog (shha), a master gene of development that, when mutated, produces holoprocensephalia. Our results suggest the NPAS3 gene plays a role in craniofacial development.Fil: Cinalli, Alejandro Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Endogenous purines modulate K+-evoked ACh secretion at the mouse neuromuscular junction

    No full text
    At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y13 and A1, A2A, and A3 receptors, respectively. To elucidate the action of endogenous purines on K+-dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K+, the P2Y13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5′-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A1, A3, and A2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K+-evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K+, endogenous ATP/ADP and adenosine bind to inhibitory P2Y13 and A1 and A3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5′-nucleotidase inhibitor α,β-methyleneadenosine 5′-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K+, suggesting that more adenosine is needed to activate excitatory A2A receptors. At high K+ concentration, the equilibrative transporters appear to be saturated allowing the accumulation of adenosine in the synaptic cleft. In conclusion, when motor nerve terminals are depolarized by increasing K+ concentrations, the ATP/ADP and adenosine endogenously generated are able to modulate ACh secretion by sequential activation of different purinergic receptors.Fil: Guarracino, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Cinalli, Alejandro Raúl. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Veggetti, Mariela Iris. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Losavio, Adriana Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentin

    P2Y 13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction

    No full text
    It is known that adenosine 5′-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12–13 receptors, 2-methylthioadenosine 5′-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12–13 antagonists AR-C69931MX or 2-methylthioadenosine 5′-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5′-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction.Fil: Guarracino, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Cinalli, Alejandro Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Fernández, Verónica. Universidad Argentina ; ArgentinaFil: Roquel, LIliana. Universidad Argentina ; ArgentinaFil: Losavio, Adriana Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentin

    Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction

    Get PDF
    BACKGROUND AND PURPOSE: The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. EXPERIMENTAL APPROACH: End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. KEY RESULTS: Inosine (100 μM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd(2+) , the removal of extracellular Ca(2+) and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. CONCLUSION AND IMPLICATIONS: Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine.Fil: Cinalli, Alejandro Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Guarracino, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Fernández, Verónica Guillermina. Universidad Argentina "John F. Kennedy"; ArgentinaFil: Roquel, L. I.. Universidad Argentina "John F. Kennedy"; ArgentinaFil: Losavio, Adriana Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentin
    corecore