34 research outputs found

    Seismic Behaviour of Water Front Structures with Tyre Chip Backfill

    Get PDF
    Water front structures have suffered significant damage in many of the recent earthquakes. One of the primary causes for the poor performance of these classes of structures is the liquefaction of the foundation soil and in some instances liquefaction of the backfill soil. The liquefaction of the soil in-front of the quay wall tends to cause large lateral displacements and rotation of the wall. Full or partial liquefaction of the backfill can result in the increase of lateral earth pressure exerted on the wall that can cause additional lateral displacement of the wall. In this paper numerical analyses of a gravity wall type water front structure will be considered. Often such gravity walls are placed on rubble mound that is deposited onto the sea bed. The problem will be based on a generic model although the simplifications in the generic model were derived based on observed failures of quay walls following the 1995 Kobe earthquake. The paper presents finite element analyses of such a problem in which strength degradation of the foundation soil and the backfill material will be modelled using PZ mark III constitutive relationship. At the Port and Airport Research Institute (PARI) in Japan the possibility of using tyre chips from used car tyres as the backfill material is being researched using 1G underwater shaking table and dynamic centrifuge modelling. The finite element analyses will be repeated by including a zone of backfill consisting of the tyre chips. The properties of this material will be derived from the element tests carried out at PARI. Finally the results from the analyses of the gravity wall founded rubble mound with liquefiable foundation soil and backfill will be compared to those with tyre chip backfill. The improvement in the performance of the wall in terms of decreased lateral displacements and/or reduction in the rotation suffered by the wall will be compared

    leap ucd 2017 centrifuge tests at cambridge

    Get PDF
    As part of the LEAP project the seismic response of a liquefiable 5° slope was modelled at a number of centrifuges around the world. In this paper the two experiments conducted at Cambridge University are discussed. The model preparation is detailed with particular emphasis on the sand pouring, saturation and slope cutting process. The presence of the third harmonic in the input motion is shown and its significance discussed. The potential for wavelet denoising to filter random electrical noise from the pore pressure traces is illustrated. CPT strength profiles are highlighted and a possible softer layer in one of the tests is discussed. Whilst the specifications called for one dense and one loose test, the likelihood that both Cambridge tests were loosely poured is assessed. The PIV technique is used to obtain the displacements of the slope during the test. Finally, the correspondence between the PIV displacements and physical measurements of the marker movements is compared

    Particle Image Velocimetry analysis in dynamic centrifuge tests

    No full text
    The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London

    Development of teaching resources for physical modelling community

    No full text
    Physical modelling of interesting geotechnical problems has helped clarify behaviours and failure mechanisms of many civil engineering systems. Interesting visual information from physical modelling can also be used in teaching to foster interest in geotechnical engineering and recruit young researchers to our field. With this intention, the Teaching Committee of TC2 developed a web-based teaching resources centre. In this paper, the development and organisation of the resource centre using Wordpress. Wordpress is an open-source content management system which allows user content to be edited and site administration to be controlled remotely via a built-in interface. Example data from a centrifuge test on shallow foundations which could be used for undergraduate or graduate level courses is presented and its use illustrated. A discussion on the development of wiki-style addition to the resource centre for commonly used physical model terms is also presented. © 2010 Taylor & Francis Group, London
    corecore