18 research outputs found

    A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli

    Get PDF
    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses

    Introduction of novel thermostable alpha-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related alpha-amylases under five individual GH13 subfamilies

    No full text
    Among the thermophilic Bacillaceae family members, alpha-amylase production of 15 bacilli from genus Anoxybacillus was investigated, some of which are biotechnologically important. These Anoxybacillus alpha-amylase genes displayed ae 91.0% sequence similarities to Anoxybacillus enzymes (ASKA, ADTA and GSX-BL), but relatively lower similarities to Geobacillus (ae 69.4% to GTA, Gt-amyII), and Bacillus aquimaris (ae 61.3% to BaqA) amylases, all formerly proposed only in a Glycoside Hydrolase 13 (GH13) subfamily. The phylogenetic analyses of 63 bacilli-originated protein sequences among 93 alpha-amylases revealed the overall relationships within Bacillaceae amylolytic enzymes. All bacilli alpha-amylases formed 5 clades different from 15 predefined GH13 subfamilies. Their phylogenetic findings, taxonomic relationships, temperature requirements, and comparisonal structural analyses (including their CSR-I-VII regions, 12 sugar- and 4 calcium-binding sites, presence or absence of the complete catalytic machinery, and their currently unassigned status in a valid GH13 subfamiliy) revealed that these five GH13 alpha-amylase clades related to familly share some common characteristics, but also display differentiative features from each other and the preclassified ones. Based on these findings, we proposed to divide Bacillaceae related GH13 subfamilies into 5 individual groups: the novel a2 subfamily clustered around alpha-amylase B2M1-A (Anoxybacillus sp.), the a1, a3 and a4 subfamilies (including the representatives E184aa-A (Anoxybacillus sp.), ATA (Anoxybacillus tepidamans), and BaqA,) all of which were composed from the division of the previously grouped single subfamily around alpha-amylase BaqA, and the undefinite subfamily formerly defined as xy including Bacillus megaterium NL3
    corecore