65 research outputs found

    Optical measurements on thermal convection processes inside thermal energy storages during stand-by periods

    Get PDF
    Thermal energy storages (TES) are increasingly important for storing energy from renewable energy sources. TES that work with liquid storage materials are used in their most efficient way by stratifying the storage fluid by its thermal density gradient. Mixing of the stratification layers during stand-by periods decreases the thermal efficiency of the TES. Tank sidewalls, unlike the often poorly heat-conducting storage fluids, promote a heat flux from the hot to the cold layer and lead to thermal convection. In this experimental study planar particle image velocimetry (PIV) measurements and background-oriented schlieren (BOS) temperature measurements are performed in a model experiment of a TES to characterise the influence of the thermal convection on the stratification and thus the storage efficiency. The PIV results show two vertical, counter-directed wall jets that approach in the thermocline between the stratification layers. The wall jet in the hot part of the thermal stratification shows compared to the wall jet in the cold region strong fluctuations in the vertical velocity, that promote mixing of the two layers. The BOS measurements have proven that the technique is capable of measuring temperature fields in thermally stratified storage tanks. The density gradient field as an intermediate result during the evaluation of the temperature field can be used to indicate convective structures that are in good agreement to the measured velocity fields

    On the application of neural networks for temperature field measurements using thermochromic liquid crystals

    Get PDF
    This study presents an investigation regarding the applicability of neural networks for temperature measurements using thermochromic liquid crystals (TLCs) and discusses advantages as well as disadvantages of common calibration approaches. For the characterization of the measurement technique, the dependency of the color of the TLCs on the temperature as well as on the observation angle and, therefore, on the position within the field of view of a color camera is analyzed in detail. In order to consider the influence of the position within the field of view on the color, neural networks are applied for the calibration of the temperature measurements. In particular, the focus of this study is on analysis of the error of temperature measurement for different network configurations as well as training methods, yielding a mean absolute deviation and a mean standard deviation in the range of 0.1 K for instantaneous measurements. On the basis of a comparison of this standard deviation to that of two further calibration approaches, it is shown that neural networks are suited for temperature measurements via the color of TLCs. Finally, the applicability of this measurement technique is illustrated at an exemplary temperature measurement in a horizontal plane of a Rayleigh-Bénard cell with large aspect ratio, which clearly shows the emergence of convective flow patterns by means of the temperature field

    Long-time experimental investigation of turbulent superstructures in Rayleigh-Bénard convection by noninvasive simultaneous measurements of temperature and velocity fields

    Get PDF
    Large-scale mean patterns in Rayleigh-Bénard convection, also referred to as turbulent superstructures, have mainly been studied by means of numerical simulations so far, but experimental investigations are still rare. However, the analysis of turbulent superstructures, which are of great importance due to their effect on the local transport of heat and momentum, require both numerical and experimental data. Therefore, within the scope of this study measurements were performed in the horizontal mid plane and in a horizontal plane closer to the top of a Rayleigh-Bénard cell with an aspect ratio of [Gamma]=l/h=25, thereby showing the initial formation of turbulent superstructures and their long-time rearrangement. The turbulent superstructures are investigated experimentally by noninvasive simultaneous measurements of temperature and velocity fields, using the color signal of thermochromic liquid crystals (TLCs) for the evaluation of the temperature and their temporal displacement for the determination of all three velocity components in the measurement planes via stereoscopic particle image velocimetry (stereo-PIV). Applying this measuring technique it is demonstrated that the time-averaging of instantaneous temperature and velocity fields uncovers the turbulent superstructures in both fields. Furthermore, the combination of the temperature and velocity data is used to characterize the local heat flux quantified by the local Nusselt number, which confirms that the turbulent superstructures strongly enhance the heat transfer in Rayleigh-Bénard convection

    Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden

    Get PDF
    Die vorwiegend experimentelle Arbeit befasst sich mit der systematischen Untersuchung von Parametervariationen bei der aktiven Strömungskontrolle mit elektromagnetischen Kräften. An einer angestellten Platte und einem NACA0015-Profil wurde die saugseitige abgelöste Strömung durch das Einbringen einer periodischen wandparallelen Lorentzkraft an der Vorderkante beeinflusst und experimentell mittels zeitaufgelöster Particle Image Velocimetry (PIV) untersucht. Dabei wurde für verschiedene Anstellwinkel und Reynoldszahlen die Frequenz der Anregung, deren Impulseintrag und der zeitliche Kraftverlauf variiert. Strömungsmechanische Untersuchungen experimenteller und numerischer Natur wurden für eine elektrochemische Zelle und den Fall der Elektrolyse an Millieelektroden unter dem Einfluss externer Magnetfelder durchgeführt. Die Übereinstimmung der gemessenen und berechneten Geschwindigkeitsfelder war dabei sehr gut. Entgegen der Annahme, dass im Falle homogener Magnetfelder keine Strömungen induziert werden, konnte nachgewiesen werden, dass durch die lokale Krümmung der elektrischen Feldlinien in Elektrodennähe starke Lorentzkräfte generiert werden. Dies führt zu sehr komplexen Primär-und Sekundärströmungen. Die gleichen Effekte bewirken ebenfalls in der Nähe von Millieelektroden starke Lorentzkräfte in homogenen magnetischen Feldern. Die experimentellen Beobachtungen an Millieelektroden von Leventis et. al (2005), welche zum Beweis der Konzentrationsgradientenkraft herangezogen wurden, konnten alle auf das Wirken lokaler Lorentzkräfte zurückgeführt werden. Der experimentelle Nachweis der Konzentrationsgradientenkraft steht damit weiterhin aus. Zur Messung der Konzentrationen in elektrochemischen Systemen wurde erstmals das Hintergrundschlierenverfahren angewendet. Dieses Verfahren erlaubt die Bestimmung der räumlichen Konzentrationsgradienten mit erheblich weniger messtechnischen Aufwand gegenüber spektroskopischen Methoden und der Schlierentechnik

    A combined velocity and temperature measurement with an LED and a low-speed camera

    Get PDF
    Microfluidic devices are governed by three-dimensional velocity and temperature fields, and their boundary conditions are often unknown. Therefore, a measurement technique is often desired to measure both fields in a volume. With astigmatism particle tracking velocimetry (APTV) combined with luminescence lifetime imaging, the temperature and all velocity components in a volume can be measured with one optical access. While the three-dimensional particle position is determined by evaluating the shape of the corresponding particle image, the temperature measurement relies on estimating the temperature-dependent luminescence lifetime derived from particle images on two subsequent image captures shortly after the photoexcitation. For this, typically a high-energetic pulsed laser is required to ensure a high signal-to-noise ratio. However, it can also cause additional heating of the fluid. We show that this problem is solved by replacing the pulsed laser with an LED. To compensate for the lower power provided by the LED, we adapted the timing schedule and vastly extended the illumination time and the exposure time for both image captures. In addition, we were able to replace the typically used high-speed camera with an ordinary double-frame camera. In this way, very low measurement uncertainties on all measured quantities can be achieved while keeping the temperature of the fluid unaffected. Random errors dominate within the two focal planes of APTV, yielding a standard deviation of the temperature of individual particles of about 1 only. The measurement error caused by the movement of tracer particles during the much longer illumination and exposure time were found to be acceptable when the measured velocity is low. With the circumvention of light-source induced heating and the lower cost of hardware devices, the adapted approach is a suitable measurement technique for microfluidic related research

    Stereoscopic PIV measurements using low-cost action cameras

    Get PDF
    Recently, large progress was made in the development towards low-cost PIV (Particle Image Velocimetry) for industrial and educational applications. This paper presents the use of two low-cost action cameras for stereoscopic planar PIV. A continuous wave laser or alternatively an LED was used for illumination and pulsed by a frequency generator. A slight detuning of the light pulsation and camera frame rate minimizes systematic errors by the rolling shutter effect and allows for the synchronization of both cameras by postprocessing without the need of hardware synchronization. The setup was successfully qualified on a rotating particle pattern in a planar and stereoscopic configuration as well as on the jet of an aquarium pump. Since action cameras are intended to be used at outdoor activities, they are small, very robust and work autarkic. In conjunction with the synchronization and image pre-processing scheme presented herein, those cameras enable stereoscopic PIV in harsh environments and even on moving experiments

    On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I

    Get PDF
    By integrating surface acoustic waves (SAW) into microfluidic devices, microparticle systems can be fractionated precisely in flexible and easily scalable Lab-on-a-Chip platforms. The widely adopted driving mechanism behind this principle is the acoustic radiation force, which depends on the size and acoustic properties of the suspended particles. Superimposed fluid motion caused by the acoustic streaming effect can further manipulate particle trajectories and might have a negative influence on the fractionation result. A characterization of the crucial parameters that affect the pattern and scaling of the acoustically induced flow is thus essential for the design of acoustofluidic separation systems. For the first time, the fluid flow induced by pseudo-standing acoustic wave fields with a wavelength much smaller than the width of the confined microchannel is experimentally revealed in detail, using quantitative three-dimensional measurements of all three velocity components (3D3C). In Part I of this study, we focus on the fluid flow close to the center of the surface acoustic wave field, while in Part II the outer regions with strong acoustic gradients are investigated. By systematic variations of the SAW-wavelength λSAW and channel height H, a transition from vortex pairs extending over the entire channel width W to periodic flows resembling the pseudo-standing wave field is revealed. An adaptation of the electrical power, however, only affects the velocity scaling. Based on the experimental data, a validated numerical model was developed in which critical material parameters and boundary conditions were systematically adjusted. Considering a Navier slip length at the substrate-fluid interface, the simulations provide a strong agreement with the measured velocity data over a large frequency range and enable an energetic consideration of the first and second-order fields. Based on the results of this study, critical parameters were identified for the particle size as well as for channel height and width. Progress for the research on SAW-based separation systems is obtained not only by these findings but also by providing all experimental velocity data to allow for further developments on other sites

    Electron spin-vorticity coupling in low and high Reynolds number pipe flows

    Get PDF
    Spin hydrodynamic coupling is a recently discovered method to directly generate electricity from an electrically conducting fluid flow in the absence of Lorentz forces. This method relies on a collective coupling of electron spins - the internal quantum mechanical angular momentum of the electrons - with the local vorticity of a fluid flow. In this work, we experimentally investigate the spin hydrodynamic coupling in circular and non-circular capillary pipe flows and extend a previously obtained range of Reynolds numbers to smaller and larger values, 20<Re<21,500, using the conducting liquid metal alloy GaInSn as the working liquid. In particular, we provide experimental evidences for the linear dependence of the generated electrical voltage with respect to the bulk flow velocity in the laminar regime of the circular pipe flow as predicted by Matsuo et al. [Phys. Rev. B. 96, 020401 (2017)]. Moreover, we show analytically that this behavior is universal in laminar regime regardless of the cross-sectional shape of the pipe. Finally, the proposed scaling law by Takahashi et al. [Nat. Phys. 12, 52 (2016)] for the generated voltage in turbulent circular pipe flows is experimentally evaluated at Reynolds numbers higher than in previous studies. Our results verify the reliability of the proposed scaling law for Reynolds numbers up to Re=21,500 for which the flow is in a fully developed turbulent state.Comment: This paper is accepted to be published in journal of Physical Review Applie
    corecore