27 research outputs found

    Mitochondrial polymorphisms in rat genetic models of hypertension

    Get PDF
    Hypertension is a complex trait that has been studied extensively for genetic contributions of the nuclear genome. We examined mitochondrial genomes of the hypertensive strains: the Dahl Salt-Sensitive (S) rat, the Spontaneously Hypertensive Rat (SHR), and the Albino Surgery (AS) rat, and the relatively normotensive strains: the Dahl Salt-Resistant (R) rat, the Milan Normotensive Strain (MNS), and the Lewis rat (LEW). These strains were used previously for linkage analysis for blood pressure (BP) in our laboratory. The results provide evidence to suggest that variations in the mitochondrial genome do not account for observed differences in blood pressure between the S and R rats. However, variants were detected among the mitochondrial genomes of the various hypertensive strains, S, SHR, and AS, and also among the normotensive strains R, MNS, and LEW. A total of 115, 114, 106, 106, and 16 variations in mtDNA were observed between the comparisons S versus LEW, S versus MNS, S versus SHR, S versus AS, and SHR versus AS, respectively. Among the 13 genes coding for proteins of the electron transport chain, 8 genes had nonsynonymous variations between S, LEW, MNS, SHR, and AS. The lack of any sequence variants between the mitochondrial genomes of S and R rats provides conclusive evidence that divergence in blood pressure between these two inbred strains is exclusively programmed through their nuclear genomes. The variations detected among the various hypertensive strains provides the basis to construct conplastic strains and further evaluate the effects of these variants on hypertension and associated phenotypes

    Substitution Mapping in Dahl Rats Identifies Two Distinct Blood Pressure Quantitative Trait Loci Within 1.12- and 1.25-Mb Intervals on Chromosome 3

    No full text
    Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTL) within the congenic region of S.R-Edn3 rats located at the q terminus of rat chromosome 3 (RNO3). An F(2)(S × S.R-Edn3) population (n = 173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat-derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3 × 5) substrain and the BP lowering effect retained by the S.R(ET3 × 2) substrain together define the RNO3 BP QTL-containing region as ∼4.64 Mb. Two nonoverlapping substrains, S.R(ET3 × 1) and S.R(ET3 × 6), had significantly lower BP compared to the S strain, indicating the presence of two distinct BP QTL in the RNO3 q terminus. The RNO3 q terminus was fine mapped with newly developed polymorphic markers to characterize the extent of the congenic regions. The two RNO3 BP QTL regions were thus defined as within intervals of 0.05–1.12 and 0.72–1.25 Mb, respectively. Also important was our difficulty in fine mapping and marker placement in this portion of the rat genome (and thus candidate gene identification) using the available genomic data, including the rat genome sequence
    corecore