11 research outputs found

    Update on novel antipsychotics and pharmacological strategies for treatment-resistant schizophrenia

    No full text
    Treatment resistant schizophrenia (TRS), the lack of response to at least two antipsychotics administered at adequate dose and duration, epitomizes in psychiatry one of the most difficult-to-treat pathologies, epidemiologically relevant (affecting one-third of schizophrenia patients) and with severe consequences for the patients in terms of overall functioning. After 50 years, only one drug is approved for TRS: clozapine. Furthermore, a few patients do not respond even to clozapine and are indicated as clozapine-resistant patients

    Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics’ Treatment of Schizophrenia

    No full text
    Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50–80 nm at a distance of 20–40 nm creating “nanocolumns” within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor’s interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis

    Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment

    No full text
    Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants’ mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted

    Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia

    No full text
    : Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS

    Altered Patterns of Brain Glucose Metabolism Involve More Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients Compared to Responder Patients and Controls: Results From a Head-to-Head 2-[18F]-FDG-PET Study

    Get PDF
    Treatment resistant schizophrenia (TRS) affects almost 30% of patients with schizophrenia and has been considered a different phenotype of the disease. In vivo characterization of brain metabolic patterns associated with treatment response could contribute to elucidate the neurobiological underpinnings of TRS. Here, we used 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) to provide the first head-to-head comparative analysis of cerebral glucose metabolism in TRS patients compared to schizophrenia responder patients (nTRS), and controls. Additionally, we investigated, for the first time, the differences between clozapine responders (Clz-R) and non-responders (Clz-nR)

    Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance

    No full text
    : Schizophrenia is a severe mental illness characterized by alterations in processes that regulate both synaptic plasticity and functional connectivity between brain regions. Antipsychotics are the cornerstone of schizophrenia pharmacological treatment and, beyond occupying dopamine D2 receptors, can affect multiple molecular targets, pre- and postsynaptic sites, as well as intracellular effectors. Multiple lines of evidence point to the involvement of antipsychotics in sculpting synaptic architecture and remodeling the neuronal functional unit. Furthermore, there is an increasing awareness that antipsychotics with different receptor profiles could yield different interregional patterns of co-activation. In the present systematic review, we explored the fundamental changes that occur under antipsychotics' administration, the molecular underpinning, and the consequences in both acute and chronic paradigms. In addition, we investigated the relationship between synaptic plasticity and functional connectivity and systematized evidence on different topographical patterns of activation induced by typical and atypical antipsychotics

    A Postsynaptic Density Immediate Early Gene-Based Connectome Analysis of Acute NMDAR Blockade and Reversal Effect of Antipsychotic Administration

    No full text
    : Although antipsychotics' mechanisms of action have been thoroughly investigated, they have not been fully elucidated at the network level. We tested the hypothesis that acute pre-treatment with ketamine (KET) and administration of asenapine (ASE) would modulate the functional connectivity of brain areas relevant to the pathophysiology of schizophrenia, based on transcript levels of Homer1a, an immediate early gene encoding a key molecule of the dendritic spine. Sprague-Dawley rats (n = 20) were assigned to KET (30 mg/kg) or vehicle (VEH). Each pre-treatment group (n = 10) was randomly split into two arms, receiving ASE (0.3 mg/kg), or VEH. Homer1a mRNA levels were evaluated by in situ hybridization in 33 regions of interest (ROIs). We computed all possible pairwise Pearson correlations and generated a network for each treatment group. Acute KET challenge was associated with negative correlations between the medial portion of cingulate cortex/indusium griseum and other ROIs, not detectable in other treatment groups. KET/ASE group showed significantly higher inter-correlations between medial cingulate cortex/indusium griseum and lateral putamen, the upper lip of the primary somatosensory cortex, septal area nuclei, and claustrum, in comparison to the KET/VEH network. ASE exposure was associated with changes in subcortical-cortical connectivity and an increase in centrality measures of the cingulate cortex and lateral septal nuclei. In conclusion, ASE was found to finely regulate brain connectivity by modelling the synaptic architecture and restoring a functional pattern of interregional co-activation
    corecore