228 research outputs found

    Nearly Optimal Resource Allocation for Downlink OFDMA in 2-D Cellular Networks

    Full text link
    In this paper, we propose a resource allocation algorithm for the downlink of sectorized two-dimensional (2-D) OFDMA cellular networks assuming statistical Channel State Information (CSI) and fractional frequency reuse. The proposed algorithm can be implemented in a distributed fashion without the need to any central controlling units. Its performance is analyzed assuming fast fading Rayleigh channels and Gaussian distributed multicell interference. We show that the transmit power of this simple algorithm tends, as the number of users grows to infinity, to the same limit as the minimal power required to satisfy all users' rate requirements i.e., the proposed resource allocation algorithm is asymptotically optimal. As a byproduct of this asymptotic analysis, we characterize a relevant value of the reuse factor that only depends on an average state of the network.Comment: submitted to IEEE Transactions on Wireless Communication

    Energy minimization based Resource Scheduling for Strict Delay Constrained Wireless Communications

    Get PDF
    This paper investigates the energy consumption minimization for resource scheduling in a wireless communication. We propose to take into account a strict delay constraint for each queued packet rather than an average delay constraint, in addition to a buffer overflow constraint. The associated optimization problem can be modeled as Constraint Markov Decision Problem where the actions are the number of packets sent on the known channel at each slot. The optimal random policy is exhibited through the resolution of standard linear programming. We show the gain in energy is substantial compared to naive policy

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial
    • …
    corecore