4 research outputs found
Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
The identification of 101 genes upregulated or differentially expressed by mature human oocytes is provided herein. These genes and the corresponding gene products will facilitate a greater understanding of oogenesis, folliculogenesis, fertilization, and embryonic development. In addition these genes and the corresponding gene products can be used to effect dedifferentiation and/or transdifferentiation of desired somatic cells. The resultant dedifferentiated cells and somatic cells derived therefrom can be used in cell therapies such as in the treatment of cancer, autoimmunity, and other diseases wherein specific types of cells such as hematopoietic cells may be depleted because of the underlying disease or the treatment of the disease. Also, a core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This invention therefore provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes will also expand knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis
Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
The identification of 101 genes upregulated or differentially expressed by mature human oocytes is provided herein. These genes and the corresponding gene products will facilitate a greater understanding of oogenesis, folliculogenesis, fertilization, and embryonic development. In addition these genes and the corresponding gene products can be used to effect dedifferentiation and/or transdifferentiation of desired somatic cells. The resultant dedifferentiated cells and somatic cells derived therefrom can be used in cell therapies such as in the treatment of cancer, autoimmunity, and other diseases wherein specific types of cells such as hematopoietic cells may be depleted because of the underlying disease or the treatment of the disease. Also, a core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This invention therefore provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes will also expand knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis
Full developmental potential of mammalian preimplantation embryos is maintained after imaging using a spinning-disk confocal microscope
Fluorescent live imaging of cells and embryos at subcellular resolution poses significant challenges for biologists due to morbidity and mortality ensuing from phototoxicity. Here we report the use of a spinning-disk confocal microscope to image mouse and bovine preimplantation embryos without impairing their developmental potential. We also present data indicating that this imaging technique does not affect the functionality of subcellular components as assessed by reactive oxygen species (ROS) production, caspase activity, and DNA integrity. Spinning-disk confocal microscopy was also useful in determining cell number and allocation in transgenic bovine blastocysts. We conclude that this imaging method is suitable for monitoring preimplantation embryos