889 research outputs found

    Asymptotic behavior of Structures made of Plates

    Full text link
    The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 2δ2\delta when δ0\delta\to 0. This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of the structure displacements and on the passing to the limit in fixed domains. We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations. An elementary displacement is linear with respect to the variable xx3. It is written U(x)+R(x)x3e3U(^x)+R(^x)\land x3e3 where U is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ0\delta \to 0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded of the strained tensor. Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H1(S;R3)H1(S;R3) where S is the skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion. Eventually we pass to the limit as δ0\delta \to 0 in the linearized elasticity system, on the one hand we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements

    Continuum Electromechanical Modeling of Protein-Membrane Interaction

    Full text link
    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electro-elastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.Comment: 5 pages, 12 figure

    Adaptive finite element computations of shear band formation

    Get PDF

    The density functional theory of classical fluids revisited

    Full text link
    We reconsider the density functional theory of nonuniform classical fluids from the point of view of convex analysis. From the observation that the logarithm of the grand-partition function logΞ[ϕ]\log \Xi [\phi] is a convex functional of the external potential ϕ\phi it is shown that the Kohn-Sham free energy A[ρ]{\cal A}[\rho] is a convex functional of the density ρ\rho. logΞ[ϕ]\log \Xi [\phi] and A[ρ]{\cal A}[\rho] constitute a pair of Legendre transforms and each of these functionals can therefore be obtained as the solution of a variational principle. The convexity ensures the unicity of the solution in both cases. The variational principle which gives logΞ[ϕ]\log \Xi [\phi] as the maximum of a functional of ρ\rho is precisely that considered in the density functional theory while the dual principle, which gives A[ρ]{\cal A}[\rho] as the maximum of a functional of ϕ\phi seems to be a new result.Comment: 10 page

    Relativistic Elastostatics I: Bodies in Rigid Rotation

    Full text link
    We consider elastic bodies in rigid rotation, both nonrelativistically and in special relativity. Assuming a body to be in its natural state in the absence of rotation, we prove the existence of solutions to the elastic field equations for small angular velocity.Comment: 25 page

    Relativistic Elasticity

    Get PDF
    Relativistic elasticity on an arbitrary spacetime is formulated as a Lagrangian field theory which is covariant under spacetime diffeomorphisms. This theory is the relativistic version of classical elasticity in the hyperelastic, materially frame-indifferent case and, on Minkowski space, reduces to the latter in the non-relativistic limit . The field equations are cast into a first -- order symmetric hyperbolic system. As a consequence one obtains local--in--time existence and uniqueness theorems under various circumstances.Comment: 23 page

    Characterising a universal cloning machine by maximum-likelihood estimation

    Get PDF
    We apply a general method for the estimation of completely positive maps to the 1-to-2 universal covariant cloning machine. The method is based on the maximum-likelihood principle, and makes use of random input states, along with random projective measurements on the output clones. The downhill simplex algorithm is applied for the maximisation of the likelihood functional.Comment: 5 pages, 2 figure

    A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation

    Full text link
    Compressible Mooney-Rivlin theory has been used to model hyperelastic solids, such as rubber and porous polymers, and more recently for the modeling of soft tissues for biomedical tissues, undergoing large elastic deformations. We propose a solution procedure for Lagrangian finite element discretization of a static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the case in which the boundary condition is a large prescribed deformation, so that mesh tangling becomes an obstacle for straightforward algorithms. Our solution procedure involves a largely geometric procedure to untangle the mesh: solution of a sequence of linear systems to obtain initial guesses for interior nodal positions for which no element is inverted. After the mesh is untangled, we take Newton iterations to converge to a mechanical equilibrium. The Newton iterations are safeguarded by a line search similar to one used in optimization. Our computational results indicate that the algorithm is up to 70 times faster than a straightforward Newton continuation procedure and is also more robust (i.e., able to tolerate much larger deformations). For a few extremely large deformations, the deformed mesh could only be computed through the use of an expensive Newton continuation method while using a tight convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in Engineering with Computers on 9 September 2010. Accepted for publication on 20 May 2011. Published online 11 June 2011. The final publication is available at http://www.springerlink.co

    Identification of nonlinearity in conductivity equation via Dirichlet-to-Neumann map

    Full text link
    We prove that the linear term and quadratic nonlinear term entering a nonlinear elliptic equation of divergence type can be uniquely identified by the Dirichlet to Neuman map. The unique identifiability is proved using the complex geometrical optics solutions and singular solutions
    corecore