889 research outputs found
Asymptotic behavior of Structures made of Plates
The aim of this work is to study the asymptotic behavior of a structure made
of plates of thickness when . This study is carried on
within the frame of linear elasticity by using the unfolding method. It is
based on several decompositions of the structure displacements and on the
passing to the limit in fixed domains. We begin with studying the displacements
of a plate. We show that any displacement is the sum of an elementary
displacement concerning the normal lines on the middle surface of the plate and
a residual displacement linked to these normal lines deformations. An
elementary displacement is linear with respect to the variable 3. It is
written where U is a displacement of the mid-surface of
the plate. We show a priori estimates and convergence results when . We characterize the limits of the unfolded displacements of a plate as well
as the limits of the unfolded of the strained tensor. Then we extend these
results to the structures made of plates. We show that any displacement of a
structure is the sum of an elementary displacement of each plate and of a
residual displacement. The elementary displacements of the structure (e.d.p.s.)
coincide with elementary rods displacements in the junctions. Any e.d.p.s. is
given by two functions belonging to where S is the skeleton of the
structure (the plates mid-surfaces set). One of these functions : U is the
skeleton displacement. We show that U is the sum of an extensional displacement
and of an inextensional one. The first one characterizes the membrane
displacements and the second one is a rigid displacement in the direction of
the plates and it characterizes the plates flexion. Eventually we pass to the
limit as in the linearized elasticity system, on the one hand we
obtain a variational problem that is satisfied by the limit extensional
displacement, and on the other hand, a variational problem satisfied by the
limit of inextensional displacements
Continuum Electromechanical Modeling of Protein-Membrane Interaction
A continuum electromechanical model is proposed to describe the membrane
curvature induced by electrostatic interactions in a solvated protein-membrane
system. The model couples the macroscopic strain energy of membrane and the
electrostatic solvation energy of the system, and equilibrium membrane
deformation is obtained by minimizing the electro-elastic energy functional
with respect to the dielectric interface. The model is illustrated with the
systems with increasing geometry complexity and captures the sensitivity of
membrane curvature to the permanent and mobile charge distributions.Comment: 5 pages, 12 figure
The density functional theory of classical fluids revisited
We reconsider the density functional theory of nonuniform classical fluids
from the point of view of convex analysis. From the observation that the
logarithm of the grand-partition function is a convex
functional of the external potential it is shown that the Kohn-Sham free
energy is a convex functional of the density . and constitute a pair of Legendre transforms and each
of these functionals can therefore be obtained as the solution of a variational
principle. The convexity ensures the unicity of the solution in both cases. The
variational principle which gives as the maximum of a
functional of is precisely that considered in the density functional
theory while the dual principle, which gives as the maximum of
a functional of seems to be a new result.Comment: 10 page
Relativistic Elastostatics I: Bodies in Rigid Rotation
We consider elastic bodies in rigid rotation, both nonrelativistically and in
special relativity. Assuming a body to be in its natural state in the absence
of rotation, we prove the existence of solutions to the elastic field equations
for small angular velocity.Comment: 25 page
Relativistic Elasticity
Relativistic elasticity on an arbitrary spacetime is formulated as a
Lagrangian field theory which is covariant under spacetime diffeomorphisms.
This theory is the relativistic version of classical elasticity in the
hyperelastic, materially frame-indifferent case and, on Minkowski space,
reduces to the latter in the non-relativistic limit . The field equations are
cast into a first -- order symmetric hyperbolic system. As a consequence one
obtains local--in--time existence and uniqueness theorems under various
circumstances.Comment: 23 page
Recommended from our members
On the numerical approximation of p-biharmonic and ∞-biharmonic functions
In [KP16] (arXiv:1605.07880) the authors introduced a second-order variational problem in L∞. The associated equation, coined the ∞-Bilaplacian, is a \emph{third order} fully nonlinear PDE given by Δ2∞u:=(Δu)3|D(Δu)|2=0. In this work we build a numerical method aimed at quantifying the nature of solutions to this problem which we call ∞-Biharmonic functions. For fixed p we design a mixed finite element scheme for the pre-limiting equation, the p-Bilaplacian Δ2pu:=Δ(|Δu|p−2Δu)=0. We prove convergence of the numerical solution to the weak solution of Δ2pu=0 and show that we are able to pass to the limit p→∞. We perform various tests aimed at understanding the nature of solutions of Δ2∞u and in 1-d we prove convergence of our discretisation to an appropriate weak solution concept of this problem, that of -solutions
Characterising a universal cloning machine by maximum-likelihood estimation
We apply a general method for the estimation of completely positive maps to
the 1-to-2 universal covariant cloning machine. The method is based on the
maximum-likelihood principle, and makes use of random input states, along with
random projective measurements on the output clones. The downhill simplex
algorithm is applied for the maximisation of the likelihood functional.Comment: 5 pages, 2 figure
A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation
Compressible Mooney-Rivlin theory has been used to model hyperelastic solids,
such as rubber and porous polymers, and more recently for the modeling of soft
tissues for biomedical tissues, undergoing large elastic deformations. We
propose a solution procedure for Lagrangian finite element discretization of a
static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the
case in which the boundary condition is a large prescribed deformation, so that
mesh tangling becomes an obstacle for straightforward algorithms. Our solution
procedure involves a largely geometric procedure to untangle the mesh: solution
of a sequence of linear systems to obtain initial guesses for interior nodal
positions for which no element is inverted. After the mesh is untangled, we
take Newton iterations to converge to a mechanical equilibrium. The Newton
iterations are safeguarded by a line search similar to one used in
optimization. Our computational results indicate that the algorithm is up to 70
times faster than a straightforward Newton continuation procedure and is also
more robust (i.e., able to tolerate much larger deformations). For a few
extremely large deformations, the deformed mesh could only be computed through
the use of an expensive Newton continuation method while using a tight
convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in
Engineering with Computers on 9 September 2010. Accepted for publication on
20 May 2011. Published online 11 June 2011. The final publication is
available at http://www.springerlink.co
Identification of nonlinearity in conductivity equation via Dirichlet-to-Neumann map
We prove that the linear term and quadratic nonlinear term entering a
nonlinear elliptic equation of divergence type can be uniquely identified by
the Dirichlet to Neuman map. The unique identifiability is proved using the
complex geometrical optics solutions and singular solutions
- …
