19 research outputs found

    Carotenoid triplet state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene

    Get PDF
    Triplet state electron paramagnetic resonance (EPR) experiments have been carried out at X-band on Rb. sphaeroides R-26 reaction centers that have been reconstituted with the carotenoid, spheroidene, and exchanged with 132-OH-Zn-bacteriochlorophyll a and [3-vinyl]-132-OH-bacteriochlorophyll a at the monomeric, lsquoaccessoryrsquo bacteriochlorophyll sites BA,B or with pheophytin a at the bacteriopheophytin sites HA,B. The primary donor and carotenoid triplet state EPR signals in the temperature range 95–150 K are compared and contrasted with those from native Rb. sphaeroides wild type and Rb. sphaeroides R-26 reaction centers reconstituted with spheroidene. The temperature dependencies of the EPR signals are strikingly different for the various samples. The data prove that triplet energy transfer from the primary donor to the carotenoid is mediated by the monomeric, BChlB molecule. Furthermore, the data show that triplet energy transfer from the primary donor to the carotenoid is an activated process, the efficiency of which correlates with the estimated triplet state energies of the modified pigments

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers.

    Get PDF
    The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer

    Effects of molecular structure and hydrogen bonding on the radiationless deactivation of singlet excited fluorenone derivatives

    No full text
    Substituent effects on intramolecular radiationless deactivation and hydrogen-bonding-induced quenching have been examined for various fluorenone derivatives. In toluene, triplet formation is the dominant process from the singlet excited state when an electron-withdrawing group is attached to the fluorenone moiety, whereas an electron-donating substituent promotes internal conversion. There is a clear correlation between the internal conversion rate constant and the lowest excited singlet state energy, which can be explained in terms of the energy gap law. It is shown that both the electron-donating character of the substituent in the excited fluorenone and the hydrogen-bonding power of alcohol play important roles in determining the rate of dynamic quenching by alcohols. The intermolecular hydrogen bonding with alcohols in the singlet excited state acts as an effective accepting mode of radiationless deactivation for fluorenones substituted with an electron-donating group. However, 2-NO2- and 2-COOCH3- derivatives are poorly quenched by alcohols. The parallel change of the hydrogen-bonding-induced quenching rate constants and the dipole moment difference between the ground and the singlet excited states suggests that the electron density around the carbonyl oxygen controls the quenching rate in the series of 2-substituted fluorenones
    corecore