12 research outputs found

    The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice

    Get PDF
    As Oryza sativa (rice) seeds represent food for over three billion people worldwide, the identification of genes that enhance grain size and composition is much desired. Past reports have indicated that Arabidopsis thaliana acyl-CoA-binding proteins (ACBPs) are important in seed development but did not affect seed size. Herein, rice OsACBP2 was demonstrated not only to play a role in seed development and germination, but also to influence grain size. OsACBP2 mRNA accumulated in embryos and endosperm of germinating seeds in qRT-PCR analysis, while b-glucuronidase (GUS) assays on OsACBP2pro::GUS rice transformants showed GUS expression in embryos, as well as the scutellum and aleurone layer of germinating seeds. Deletion analysis of the OsACBP2 5’-flanking region revealed five copies of the seed cis-element, Skn-I-like motif (1486/1482, 956/952, 939/935, 826/822, and 766/762), and the removal of any adversely affected expression in seeds, thereby providing a molecular basis for OsACBP2 expression in seeds. When OsACBP2 function was investigated using osacbp2 mutants and transgenic rice overexpressing OsACBP2 (OsACBP2-OE), osacbp2 was retarded in germination, while OsACBP2-OEs performed better than the wild-type and vector-transformed controls, in germination, seedling growth, grain size and grain weight. Transmission electron microscopy of OsACBP2-OE mature seeds revealed an accumulation of oil bodies in the scutellum cells, while confocal laser scanning microscopy indicated oil accumulation in OsACBP2-OE aleurone tissues. Correspondingly, OsACBP2-OE seeds showed gain in triacylglycerols and long-chain fatty acids over the vector-transformed control. As dietary rice bran contains beneficial bioactive components, OsACBP2 appears to be a promising candidate for enriching seed nutritional value

    Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance

    No full text
    Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) is encoded by four isogenes (BjHMGS1-BjHMGS4). In vitro enzyme assays had indicated that the recombinant BjHMGS1 H188N mutant lacked substrate inhibition by acetoacetyl-CoA (AcAc-CoA) and showed 8-fold decreased enzyme activity. The S359A mutant demonstrated 10-fold higher activity, while the H188N/S359A double mutant displayed a 10-fold increased enzyme activity and lacked inhibition by AcAc-CoA. Here, wild-type and mutant BjHMGS1 were overexpressed in Arabidopsis to examine their effects in planta. The expression of selected genes in isoprenoid biosynthesis, isoprenoid content, seed germination and stress tolerance was analysed in HMGS overexpressors (OEs). Those mRNAs encoding enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol methyltransferase 2 (SMT2), delta-24 sterol reductase (DWF1), C-22 sterol desaturase (CYP710A1) and brassinosteroid-6-oxidase 2 (BR6OX2) were up-regulated in HMGS-OEs. The total sterol content in leaves and seedlings of OE-wtBjHMGS1, OE-S359A and OE-H188N/S359A was significantly higher than OE-H188N. HMGS-OE seeds germinated earlier than wild-type and vector-transformed controls. HMGS-OEs further displayed reduced hydrogen peroxide (H 2O 2)-induced cell death and constitutive expression of salicylic acid (SA)-dependent pathogenesis-related genes (PR1, PR2 and PR5), resulting in an increased resistance to Botrytis cinerea, with OE-S359A showing the highest and OE-H188N the lowest tolerance. These results suggest that overexpression of HMGS up-regulates HMGR, SMT2, DWF1, CYP710A1 and BR6OX2, leading to enhanced sterol content and stress tolerance in Arabidopsis. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.link_to_subscribed_fulltex

    Rubber

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field. © 2012 Landes Bioscience
    corecore