88 research outputs found
Realization of the quantum Toffoli gate with trapped ions
Algorithms for quantum information processing are usually decomposed into
sequences of quantum gate operations, most often realized with single- and two-
qubit gates[1]. While such operations constitute a universal set for quantum
computation, gates acting on more than two qubits can simplify the
implementation of complex quantum algorithms[2]. Thus, a single three-qubit
operation can replace a complex sequence of two-qubit gates, which in turn
promises faster execution with potentially higher Fidelity. One important
three-qubit operation is the quantum Toffoli gate which performs a NOT
operation on a target qubit depending on the state of two control qubits. Here
we present the first experimental realization of the quantum Toffoli gate in an
ion trap quantum computer. Our implementation is particular effcient as we
directly encode the relevant logic information in the motion of the ion string.
[1] DiVincenzo, D. P. Two-bit gates are universal for quantum computation.
cond-mat/9407022, Phys.Rev. A 51, 1015-1022 (1995). [2] Chiaverini, J. et al.
Realization of quantum error correction. Nature 432, 602-605 (2004).Comment: 11 pages, 2 figure
Low-dimensional quite noisy bound entanglement with cryptographic key
We provide a class of bound entangled states that have positive distillable
secure key rate. The smallest state of this kind is 4 \bigotimes 4. Our class
is a generalization of the class presented in [1] (IEEE Trans. Inf. Theory 54,
2621 (2008); arXiv:quant-ph/0506203). It is much wider, containing, in
particular, states from the boundary of PPT entangled states (all of the states
in the class in [1] were of this kind) but also states inside the set of PPT
entangled states, even, approaching the separable states. This generalization
comes with a price: for the wider class a positive key rate requires, in
general, apart from the one-way Devetak-Winter protocol (used in [1]) also the
recurrence preprocessing and thus effectively is a two-way protocol. We also
analyze the amount of noise that can be admixtured to the states of our class
without losing key distillability property which may be crucial for
experimental realization. The wider class contains key-distillable states with
higher entropy (up to 3.524, as opposed to 2.564 for the class in [1]).Comment: 10 pages, final version for J. Phys. A: Math. Theo
Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling
The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling.
We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems.
Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments
Robust entanglement
It is common belief among physicists that entangled states of quantum systems
loose their coherence rather quickly. The reason is that any interaction with
the environment which distinguishes between the entangled sub-systems collapses
the quantum state. Here we investigate entangled states of two trapped Ca
ions and observe robust entanglement lasting for more than 20 seconds
Precision spectroscopy with two correlated atoms
We discuss techniques that allow for long coherence times in laser
spectroscopy experiments with two trapped ions. We show that for this purpose
not only entangled ions prepared in decoherence-free subspaces can be used but
also a pair of ions that are not entangled but subject to the same kind of
phase noise. We apply this technique to a measurement of the electric
quadrupole moment of the 3d D5/2 state of 40Ca+ and to a measurement of the
linewidth of an ultrastable laser exciting a pair of 40Ca+ ions
'Designer atoms' for quantum metrology
Entanglement is recognized as a key resource for quantum computation and
quantum cryptography. For quantum metrology, the use of entangled states has
been discussed and demonstrated as a means of improving the signal-to-noise
ratio. In addition, entangled states have been used in experiments for
efficient quantum state detection and for the measurement of scattering
lengths. In quantum information processing, manipulation of individual quantum
bits allows for the tailored design of specific states that are insensitive to
the detrimental influences of an environment. Such 'decoherence-free subspaces'
protect quantum information and yield significantly enhanced coherence times.
Here we use a decoherence-free subspace with specifically designed entangled
states to demonstrate precision spectroscopy of a pair of trapped Ca+ ions; we
obtain the electric quadrupole moment, which is of use for frequency standard
applications. We find that entangled states are not only useful for enhancing
the signal-to-noise ratio in frequency measurements - a suitably designed pair
of atoms also allows clock measurements in the presence of strong technical
noise. Our technique makes explicit use of non-locality as an entanglement
property and provides an approach for 'designed' quantum metrology
Experimental Demonstration of Reduced Tilt-to-length Coupling by Using Imaging Systems in Precision Interferometers
Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3
Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer
The arm length and the isolation in space enable the Laser Interferometer Space Antenna (LISA) to probe for signals unattainable on the ground, opening a window to the subhertz gravitational-wave universe. The coupling of unavoidable angular spacecraft jitter into the longitudinal displacement measurement, an effect known as tilt-to-length (TTL) coupling, is critical for realizing the required sensitivity of
picometer
/
â
Hz
. An ultrastable interferometer test bed has been developed in order to investigate this issue and validate mitigation strategies in a setup representative of LISA and in this paper it is operated in the long-arm interferometer configuration. The test bed is fitted with a flat-top beam generator to simulate the beam received by a LISA spacecraft. We demonstrate a reduction of TTL coupling between this flat-top beam and a Gaussian reference beam via the introduction of two- and four-lens imaging systems. TTL coupling factors below
±
25
Ό
m
/
rad
for beam tilts within
±
300
Ό
rad
are obtained by careful optimization of the system. Moreover, we show that the additional TTL coupling due to lateral-alignment errors of elements of the imaging system can be compensated by introducing lateral shifts of the detector and vice versa. These findings help validate the suitability of this noise-reduction technique for the LISA long-arm interferometer
- âŠ