138 research outputs found

    First record of Larsonella pumilus (Teleostei: Gobiidae) from Japan, with phylogenetic placement of the genus Larsonella

    Get PDF
    During a survey of deep-sea fauna, using a Remotely Operated Vehicle, a single specimen (21.6 mm in standard length) of Larsonella pumilus (Larson & Hoese, 1980) was collected at a depth of 214 m off the coast of Okinawa Island, Japan. It represents the first record of this species from Japan. The collection site was far deeper than previous reports for this species. This suggests that the main habitat of L. pumilus is deeper than previously recognized and it may explain the paucity of records of this species. As the previously available morphological description of L. pumilus was based on only a single specimen (holotype), this new specimen is described herein. Its morphology corresponds closely to the original description of the holotype, except that faint melanophores are arranged radially around the eyes and scattered on the trunk and the fins. Mitochondrial genome sequences of L. pumilus and 19 related species demonstrate close relationships between L. pumilus and the genus Priolepis. These data also indicate that the genus Priolepis is not monophyletic.journal articl

    Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea

    Get PDF
    Background: Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods: In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions. Results: A horizontal growth rate of 1.13 +/- 0.25 mm per week was observed for corals subjected to 28 or 31 degrees C. This growth rate was significantly higher compared to corals exposed at 26 degrees C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 degrees C relative to corals at 26 degrees C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 degrees C compared to corals at 28 degrees C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 degrees C is likely compensated by symbiont metabolism. Discussion: These findings reveal that the different regions of H. coerulea have variable gene expression profiles and responses to temperature variation. Under warmer conditions, the blue coral invests cellular resources toward extracellular matrix formation and cellular migration at the colony margins, which may promote rapid tissue growth and extension. This mechanism enables the coral to colonize adjacent reef substrates and successfully overgrow slower growing scleractinian corals that may already be more vulnerable to warming ocean waters

    Genome‐wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: Implications for coral restoration

    Get PDF
    1. It is essential to consider genetic composition for both conventional coral restoration management and for initiating new interventions to counter the significant global decline in living corals. Population genetic structure at a fine spatial scale should be carefully evaluated before implementing strategies to achieve self-sustaining ecosystems via coral restoration. 2. This study investigated the population genetic structure of two acroporid species at Kume Island, Okinawa, Japan. There were 140 colonies of Acropora digitifera collected from seven study sites, and 81 colonies of Acropora tenuis from six sites. In total, 384 single nucleotide polymorphism (SNP) loci for A. digitifera and 470 SNPs for A. tenuis were obtained using a comparatively economical technique, Multiplexed ISSR Genotyping by sequencing. 3. Observed heterozygosity was significantly lower than expected heterozygosity at all SNP sites in both acroporid species, suggesting deficient genetic diversity possibly caused by past massive coral bleaching. Even though both species are broadcast spawners, the population structure was different in the two species. No detectable structure was evident in A. digitifera, but two distinct clades were found in A. tenuis. The genetic homogeneity of A. digitifera at Kume Island suggests that this species could be used as a focal species for active restoration in terms of genetic differentiation at this island. By contrast, A. tenuis unexpectedly included two distinct clades with little or no admixture within a small study area, possibly representing two reproductively isolated cryptic species. Thus, when using A. tenuis, it would be prudent to avoid disturbing the genetic composition of wild populations until this question is answered.journal articl

    Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa

    Get PDF
    Background: Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa).\ud \ud Results: Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences – for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella.\ud \ud Conclusion: These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia)

    Review of Schismatogobius (Gobiidae) from Japan, with the description of a new species

    Get PDF
    Three species of Schismatogobius de Beaufort 1912, distinguished by their morphology and mitochondrial DNA sequences, were found in freshwater streams in the Ryukyu Archipelago, Japan. Although two species were previously known from Japan (S. roxasi Herre 1936 and S. ampluvinculus Chen, Shao, and Fang 1995), the taxonomy needs to be revised. To identify these species, the holotype morphology of S. marmoratus (Peters 1868), S. bruynisi de Beaufort 1912, and S. roxasi, originally described from the Philippines and Indonesia, were examined and re-described here, because relatively little information about their diagnostic characters was provided in the original descriptions. The three Japanese species were identified as S. ampluvinculus, S. marmoratus, and a new species. They were distinguished from each other and from their congeners by the banding pattern of the body, markings on the pectoral fins, pigment patterns on the ventral surface of the head and pelvic fin, body depth at the pelvic-fin origin, pre-anal length, and pectoral-fin ray counts. Although the new species had been regarded as S. roxasi in previous publications, we show that it is actually not S. roxasi and that it also differs from all other nominal species of Schismatogobius. This is described as a new species, S. ninja. Additionally, this is the first record of S. marmoratus from Japan

    Transcriptome analysis of the reef-building octocoral, Heliopora coerulea

    Get PDF
    The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These findings thus offer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment

    Expansion and Diversification of Fluorescent Protein Genes in Fifteen Acropora Species during the Evolution of Acroporid Corals

    Get PDF
    In addition to a purple, non-fluorescent chromoprotein (ChrP), fluorescent proteins (FPs) account for the vivid colors of corals, which occur in green (GFP), cyan (CFP), and red (RFP) FPs. To understand the evolution of the coral FP gene family, we examined the genomes of 15 Acropora species and three confamilial taxa. This genome-wide survey identified 219 FP genes. Molecular phylogeny revealed that the 15 Acropora species each have 9-18 FP genes, whereas the other acroporids examined have only two, suggesting a pronounced expansion of the FP genes in the genus Acropora. The data estimates of FP gene duplication suggest that the last common ancestor of the Acropora species that survived in the period of high sea surface temperature (Paleogene period) has already gained 16 FP genes. Different evolutionary histories of lineage-specific duplication and loss were discovered among GFP/CFPs, RFPs, and ChrPs. Synteny analysis revealed core GFP/CFP, RFP, and ChrP gene clusters, in which a tandem duplication of the FP genes was evident. The expansion and diversification of Acropora FPs may have contributed to the present-day richness of this genus

    Unexpected diversity of cnidarian integrins: expression during coral gastrulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that <it>Caenorhabditis elegans</it>, which has a single β and two α integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral <it>Acropora millepora </it>is required to test this hypothesis and may provide insights into the original roles of these molecules.</p> <p>Results</p> <p>Two novel integrins were identified in <it>Acropora</it>. AmItgα1 shows features characteristic of α integrins lacking an I-domain, but phylogenetic analysis gives no clear indication of its likely binding specificity. AmItgβ2 lacks consensus cysteine residues at positions 8 and 9, but is otherwise a typical β integrin. In situ hybridization revealed that AmItgα1, AmItgβ1, and AmItgβ2 are expressed in the presumptive endoderm during gastrulation. A second anthozoan, the sea anemone <it>Nematostella vectensis</it>, has at least four β integrins, two resembling AmItgβ1 and two like AmItgβ2, and at least three α integrins, based on its genomic sequence.</p> <p>Conclusion</p> <p>In two respects, the cnidarian data do not fit expectations. First, the cnidarian integrin repertoire is more complex than predicted: at least two βs in <it>Acropora</it>, and at least three αs and four βs in <it>Nematostella</it>. Second, whereas the bilaterian αs resolve into well-supported groups corresponding to those specific for RGD-containing or laminin-type ligands, the known cnidarian αs are distinct from these. During early development in <it>Acropora</it>, the expression patterns of the three known integrins parallel those of amphibian and echinoderm integrins.</p

    Transcriptome Analyses of Immune System Behaviors in Primary Polyp of Coral Acropora digitifera Exposed to the Bacterial Pathogen Vibrio coralliilyticus under Thermal Loading

    Get PDF
    Elevated sea surface temperature associated with global warming is a serious threat to coral reefs. Elevated temperatures directly or indirectly alter the distribution of coral-pathogen interactions and thereby exacerbate infectious coral diseases. The pathogenic bacterium Vibrio coralliilyticus is well-known as a causative agent of infectious coral disease. Rising sea surface temperature promotes the infection of corals by this bacterium, which causes several coral pathologies, such as bacterial bleaching, tissue lysis, and white syndrome. However, the effects of thermal stress on coral immune responses to the pathogen are poorly understood. To delineate the effects of thermal stress on coral immunity, we performed transcriptome analysis of aposymbiotic primary polyps of the reef-building coral Acropora digitifera exposed to V. coralliilyticus under thermal stress conditions. V. coralliilyticus infection of coral that was under thermal stress had negative effects on various molecular processes, including suppression of gene expression related to the innate immune response. In response to the pathogen, the coral mounted various responses including changes in protein metabolism, exosome release delivering signal molecules, extracellular matrix remodeling, and mitochondrial metabolism changes. Based on these results, we provide new insights into innate immunity of A. digitifera against pathogen infection under thermal stress conditions
    corecore