2 research outputs found
Optimization of designing on cutter parameters of PCD saw blades by simulation analysis
The cutter parameters of PCD circular saw blades play a decisive role in the wood cutting process, they directly affect the machining surface quality and tool life. Simulation analysis of the cutting stress and deformation of PCD wood circular saw blades with different cutter parameters is carried out using the finite element method. The results show that the maximum shear stress of the PCD saw blade in cutting process are all in a safety range with safety coefficient of about 3.5β4.0, and the maximum displacement of PCD saw blades are about 4.8β4.9 ΞΌm in the axial direction and about 10 ΞΌm in radial and rotation directions. It was found that the best cutter parameters of the PCD circular saw blades are rake angle Ξ³ = 15Β° and rear angle Ξ± = 15Β°, in which the relative low stress of 58.9 MPa and relative smaller displacement of can be achieved.ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ ΡΡΠ·ΡΡ ΡΡΠΆΡΡΠΎΡ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΈ ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΡ ΠΏΠΈΠ»ΠΊΠΈ Π³ΡΠ°ΡΡΡ Π²ΠΈΡΡΡΠ°Π»ΡΠ½Ρ ΡΠΎΠ»Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡ ΡΡΠ·Π°Π½Π½Ρ Π΄Π΅ΡΠ΅Π²ΠΈΠ½ΠΈ, Π²ΠΎΠ½ΠΈ Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π²ΠΏΠ»ΠΈΠ²Π°ΡΡΡ Π½Π° ΡΠΊΡΡΡΡ ΠΎΠ±ΡΠΎΠ±Π»Π΅Π½ΠΎΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Ρ ΡΠ΅ΡΠΌΡΠ½ ΡΠ»ΡΠΆΠ±ΠΈ ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ. ΠΠ½Π°Π»ΡΠ· ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½ΡΠΌ Π·ΡΡΠΈΠ»Π»Ρ ΡΡΠ·Π°Π½Π½Ρ Ρ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΡΡ ΠΏΠΎΠ»ΡΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΈΡ
Π°Π»ΠΌΠ°Π·ΡΠ² ΠΏΠΎΠ»ΠΎΡΠ΅Π½ ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΡ ΠΏΠΈΠ»ΠΊΠΈ Π· ΡΡΠ·Π½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΡΠ·ΡΡ Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΠΉ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠΊΡΠ½ΡΠ΅Π½Π½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π°Π½Π°Π»ΡΠ·Ρ ΠΏΠΎΠΊΠ°Π·ΡΡΡΡ, ΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Ρ Π½Π°ΠΏΡΡΠ³ΠΈ Π·ΡΡΠ²Ρ ΠΏΠΎΠ»ΠΎΡΠ½Π° ΠΏΠΈΠ»ΠΊΠΈ Π· ΠΏΠΎΠ»ΡΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΠΌΠ°Π·Π°ΠΌΠΈ ΠΏΡΠΈ ΡΡΠ·Π°Π½Π½Ρ Π·Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡΡ Π² Π±Π΅Π·ΠΏΠ΅ΡΠ½ΠΎΠΌΡ Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½Ρ Π· ΠΊΠΎΠ΅ΡΡΡΡΡΠ½ΡΠΎΠΌ Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ ~ 3,5β4,0 Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΉ Π·ΡΡΠ² ΠΏΠΎΠ»ΠΎΡΠ΅Π½ ΠΏΠΈΠ»ΠΊΠΈ ΡΠΊΠ»Π°Π΄Π°Ρ ~ 4,8β4,9 Π² ΠΎΡΡΠΎΠ²ΠΎΠΌΡ Π½Π°ΠΏΡΡΠΌΠΊΡ, ~ 10 ΠΌΠΌ Π² ΡΠ°Π΄ΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΡΠ° Π² Π½Π°ΠΏΡΡΠΌΠΊΡ ΠΎΠ±Π΅ΡΡΠ°Π½Π½Ρ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π½Π°ΠΉΠΊΡΠ°ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ ΡΡΠ·ΡΡ ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΡ ΠΏΠΈΠ»ΠΊΠΈ Π· ΠΏΠΎΠ»ΡΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΈΠΌΠΈ Π°Π»ΠΌΠ°Π·Π°ΠΌΠΈ β ΡΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΉ ΠΊΡΡ Ξ³ = 15Β° Ρ Π·Π°Π΄Π½ΡΠΉ Ξ± = 15Β°, ΠΏΡΠΈ ΡΠΊΠΈΡ
ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π΄ΠΎΡΡΠ³Π½ΡΡΠΎ Π²ΡΠ΄Π½ΠΎΡΠ½ΠΎ Π½ΠΈΠ·ΡΠΊΠ΅ (58,9 MΠa) Π·ΡΡΠΈΠ»Π»Ρ Ρ Π²ΡΠ΄Π½ΠΎΡΠ½ΠΎ ΠΌΠ°Π»ΠΈΠΉ (4,822 ΠΌΠΊΠΌ) Π·ΡΡΠ².ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ° ΡΠ΅ΠΆΡΡΠ΅ΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½Ρ ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΈΠ»Ρ ΠΈΠ³ΡΠ°ΡΡ ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠΎΠ»Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅Π·Π°Π½ΠΈΡ Π΄ΡΠ΅Π²Π΅ΡΠΈΠ½Ρ, ΠΎΠ½ΠΈ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²Π»ΠΈΡΡΡ Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΈ ΡΡΠΎΠΊ ΡΠ»ΡΠΆΠ±Ρ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°. ΠΠ½Π°Π»ΠΈΠ· ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠΈΠ»ΠΈΡ ΡΠ΅Π·Π°Π½ΠΈΡ ΠΈ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΏΠΎΠ»ΠΎΡΠ΅Π½ ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΈΠ»Ρ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ΅Π·ΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ΄Π²ΠΈΠ³Π° ΠΏΠΎΠ»ΠΎΡΠ½Π° ΠΏΠΈΠ»Ρ Ρ ΠΏΠΎΠ»ΠΈΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΠΌΠ°Π·Π°ΠΌΠΈ ΠΏΡΠΈ ΡΠ΅Π·Π°Π½ΠΈΠΈ Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ Π² Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ~ 3,5β4,0 ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ΄Π²ΠΈΠ³ ΠΏΠΎΠ»ΠΎΡΠ΅Π½ ΠΏΠΈΠ»Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ~ 4,8β4,9 Π² ΠΎΡΠ΅Π²ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ~ 10 ΠΌΠΌ Π² ΡΠ°Π΄ΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ Π»ΡΡΡΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ° ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΈΠ»Ρ Ρ ΠΏΠΎΠ»ΠΈΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°Π»ΠΌΠ°Π·Π°ΠΌΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠ΅Π΄Π½ΠΈΠΉ ΡΠ³ΠΎΠ» Ξ³ = 15Β° ΠΈ Π·Π°Π΄Π½ΠΈΠΉ Ξ± = 15Β°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠ΅ (58,9 MΠa) ΡΡΠΈΠ»ΠΈΠ΅ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠ°Π»ΡΠΉ (4,822 ΠΌΠΊΠΌ) ΡΠ΄Π²ΠΈΠ³
Ultra-narrow band perfect absorbance induced by magnetic lattice resonances in dielectric dimer metamaterials
Nanostructured dielectric metamaterials have received extensive attention in the field of nanophotonics owing to their low radiative losses and coexisting electric and magnetic lattice resonance features. Unfortunately, suffering from the poor electromagnetic field localization and weak magnetic response in the typical dielectric metamaterials, it remains challenging to simultaneously realize ultra-narrow band perfect absorbance and intensified electromagnetic field resonances. Herein, we theoretically demonstrate a kind of dielectric metamaterials formed by dielectric cylindrical dimer array that supports magnetic lattice resonances. Benefiting from the collective diffraction coupling among the powerful magnetic dipole resonance in the dielectric dimer array, the proposed dielectric metamaterials synchronously manifest ultra-narrow spectral characteristics with bandwidth less than 8Β nm, perfect absorbance amplitude as high as 99.7% and strong electric/magnetic field enhancement factor. The effects of the structure parameters on the optical properties of the proposed nanostructure are investigated based on numerical simulations. The linewidth of absorbance spectrum can be narrowed down to approximately 3Β nm with optimal design. These excellent optical features supported by the dielectric dimer metamaterials can be explored as a high-efficiency refractive index sensor with sensitivity of 824Β nm/RIU and figure of merit as high as 242 RIUβ1. This work paves an exciting way for narrow band perfect absorbance and localized field enhancement, exhibiting tremendous enormous potential in biochemical sensing, surface enhanced spectroscopy, and nonlinear nanophotonics