14 research outputs found

    Recent advances in molecular mechanisms of skin wound healing and its treatments

    Get PDF
    The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches

    Characterization and genomic analysis of an oceanic cyanophage infecting marine Synechococcus reveal a novel genus

    Get PDF
    Cyanophages play a crucial role in the biogeochemical cycles of aquatic ecosystems by affecting the population dynamics and community structure of cyanobacteria. In this study, a novel cyanophage, Nanhaivirus ms29, that infects Synechococcus sp. MW02 was isolated from the ocean basin in the South China Sea. It was identified as a T4-like phage using transmission electron microscopy. Phylogenetic analysis demonstrated that this cyanophage is distinct from other known T4-like cyanophage, belonging to a novel genus named Nanhaivirus within the family Kyanoviridae, according to the most recent classification proposed by the International Committee on Taxonomy of Viruses (ICTV). The genome of this novel cyanophage is composed of 178,866 bp of double-stranded DNA with a G + C content of 42.5%. It contains 217 potential open reading frames (ORFs) and 6 tRNAs. As many as 30 auxiliary metabolic genes (AMGs) were identified in the genome, which related to photosynthesis, carbon metabolism, nutrient uptake and stress tolerance, possibly reflecting a genomic adaption to the oligotrophic environment. Read-mapping analysis showed that Nanhaivirus ms29 mainly distributed in temperate and tropical epipelagic waters. This study enriches of the virus gene database of cyanophages and provides valuable insights into the phylogeny of cyanophages and their interactions with their hosts

    Effects of Plasma Albumin on the Pharmacokinetics of Esomeprazole in ICU Patients

    No full text
    Objectives. To evaluate the effects of plasma albumin on pharmacokinetics of esomeprazole in ICU patients. Methods. This study was performed in 32 consecutive intensive care unit (ICU) patients. They were divided into two groups according to the plasma albumin levels. Nineteen patients with low plasma albumin levels (30 g/L (male/female, 9/4) were assigned to high plasma albumin group (HPAG). All patients were received intravenous (IV) of 40 mg esomeprazole in 5 min. Blood samples were collected via basilic vein at different time points and concentrations of esomeprazole were determined by UPLC-MS/MS. Results. MRT(0-∞), t1/2, V, CL, and Cmax between two groups were significantly difference (P<0.05). Compared with HPAG, MRT(0-∞), t1/2, and V of esomeprazole in LPAG were increased by 1.42-fold, 1.49-fold, and 1.24-fold, respectively; the maximum drug concentration of esomeprazole in LPAG was decreased to 82.5%. AUC(0-∞) of LPAG was 1.23 times than that of group B. CL in LPAG was 80% of HPAG. There was no statistical difference between the two groups of AUC(0-∞) and CL. Conclusions. Some pharmacokinetic parameters of esomeprazole may be changed in ICU patients with low plasma albumin

    mTOR inhibitor reduces nontumour-related death in liver transplantation for hepatocellular carcinoma

    No full text
    Abstract Sirolimus is a regularly applied immunosuppressant for patients undergoing liver transplantation (LT) for hepatocellular carcinoma (HCC). Sirolimus not only significantly inhibits HCC recurrence but also protects renal function. However, the improvement effect of sirolimus on nontumour-related death in patients is still unknown. The aim of our study was to investigate the therapeutic effect of sirolimus on nontumour-related deaths. In this study, we retrospectively enrolled 403 LT patients with HCC from January 1, 2015, to December 31, 2018. The median follow-up time was 47.1 months. The patients were divided into the sirolimus group (N = 184) and the sirolimus-free group (N = 219). There were no significant differences between the sirolimus group and the sirolimus-free group in survival (P = 0.054). In transplant patients who exceeded the Milan or Hangzhou criteria, the sirolimus group achieved higher survival than the sirolimus-free group (P = 0.005; P = 0.02). Moreover, multivariate analysis showed that sirolimus strongly reduced the hazard ratio (HR) for nontumour-related death in LT patients who exceeded the Milan (HR: 0.42; 95% CI: 0.18–1; P = 0.05) or Hangzhou criteria (HR: 0.26; 95% CI: 0.08–0.89; P = 0.032). HCC recurrence increased the risk of nontumour-related death. In conclusion, sirolimus-based immunosuppression can significantly reduce nontumour-related death in LT patients who exceed the criteria for transplantation. In addition, this finding will further promote the application of sirolimus after liver transplantation for hepatocellular carcinoma

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics
    corecore