11 research outputs found
The osteology of Shaochilong maortuensis, a carcharodontosaurid (dinosauria:theropoda) from the Late Cretaceous of Asia
Large-bodied theropod dinosaurs from the Early-mid Cretaceous of the northern continents (Laurasia) are poorly known. One of the most complete and intriguing theropods from this interval is Shaochilong maortuensis Hu, 1964 from the Turonian (< 92 Ma) Ulansuhai Formation of Inner Mongolia, China. The phylogenetic placement of Shaochilong has long been a subject of debate, as it has been referred to several disparate theropod groups (e.g., Megalosauridae, Allosauridae, Tyrannosauroidea, Maniraptora). In a recent taxonomic reassessment, Shaochilong was identified as the first Asian member of Carcharodontosauridae, a clade of allosauroid theropods that was once thought to be restricted to Gondwana and includes some of the largest terrestrial predators to ever live. However, the characters supporting such a placement were only briefly discussed, and a full anatomical description of Shaochilong has yet to be presented. We provide a detailed osteological description of the lectotype and paralectotype series, show that Shaochilong is a small-bodied and short-snouted carcharodontosaurid, and highlight numerous cranial features shared with other carcharodontosaurids. We argue that the vicariant hypothesis of allosauroid biogeography, in which lineages split in concert with the fragmentation of Pangaea, is poorly supported. Finally, large-scale patterns of theropod evolution and faunal replacement are discussed, and it is argued that allosauroids persisted as large-bodied predators later in the Cretaceous than previously thought. Copyright © 2010 Magnolia Press
A Megaraptor-like theropod (Dinosauria: Tetanurae) in Australia: support for faunal exchange across eastern and western Gondwana in the Mid-Cretaceous
The fossil record of Australian dinosaurs in general, and theropods in particular, is extremely sparse. Here we describe an ulna from the Early Cretaceous Eumeralla Formation of Australia that shares unique autapomorphies with the South American theropod Megaraptor. We also present evidence for the spinosauroid affinities of Megaraptor. This ulna represents the first Australian non-avian theropod with unquestionable affinities to taxa from other Gondwanan landmasses, suggesting faunal interchange between eastern and western Gondwana during the Mid-Cretaceous. This evidence counters claims of Laurasian affinities for Early Cretaceous Australian dinosaur faunas, and for the existence of a geographical or climatic barrier isolating Australia from the other Gondwanan continents during this time. The temporal and geographical distribution of Megaraptor and the Eumeralla ulna is also inconsistent with traditional palaeogeographic models for the fragmentation of Gondwana, but compatible with several alternative models positing connections between South America and Antarctica in the Mid-Cretaceous