523 research outputs found

    Structural and functional properties of human alpha-thrombin, phosphopyridoxylated alpha-thrombin, and gamma T-thrombin. Identification of lysyl residues in alpha-thrombin that are critical for heparin and fibrin (ogen) interactions.

    Get PDF
    alpha-Thrombin derivatives obtained either by site-specific modification at lysyl residues (phosphopyridoxylated) or by limited trypsinolysis (gamma T-thrombin) were compared to correlate structural modifications with the functional reactivity toward fibrin(ogen) and heparin. alpha-Thrombin phosphopyridoxylated in the absence of heparin (unprotected) showed approximately 2 mol of label incorporated/mol of thrombin, but only 1 mol of label incorporated/mol of proteinase when modified in the presence of added heparin (protected). In contrast to native alpha-thrombin, both phosphopyridoxylated alpha-thrombin derivatives failed to interact with a fibrin monomer-agarose column and had reduced fibrinogen clotting activity, which is very similar to gamma T-thrombin. Heparin accelerated the rate of antithrombin III inhibition of alpha-thrombin, heparin-protected modified-alpha-thrombin, and gamma T-thrombin in a manner consistent with a template mechanism but was without effect on unprotected modified alpha-thrombin. In a heparin-catalyzed antithrombin III inhibition assay of alpha-thrombin, we found that D-Phe-Pro-Arg chloromethyl ketone-active site-inactivated gamma T-thrombin competed for heparin binding. It has been shown that limited proteolysis/autolysis of the B-chain of alpha-thrombin in the area around Arg-B73 (in beta T/beta- and gamma T/gamma-thrombin), but not that around Lys-B154 (in gamma T/gamma-thrombin), diminishes specific interactions with fibrinogen (Hofsteenge, J., Braun, P. J., and Stone , S. R. (1988) Biochemistry 27, 2144-2151). In unprotected modified alpha-thrombin, lysyl residues B21, B65, B174, and B252 were phosphopyridoxylated. In heparin-protected modified alpha-thrombin, only lysyl residues B21 and B65 were phosphopyridoxylated. These observations suggest that lysyl residues 21/65 of the B-chain of alpha-thrombin are involved in fibrin(ogen) interactions, and lysyl residues 174/252 of the B-chain are important in heparin interactions

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Representations of time in human frontoparietal cortex

    Get PDF
    Precise time estimation is crucial in perception, action and social interaction. Previous neuroimaging studies in humans indicate that perceptual timing tasks involve multiple brain regions; however, whether the representation of time is localized or distributed in the brain remains elusive. Using ultra-high-field functional magnetic resonance imaging combined with multivariate pattern analyses, we show that duration information is decoded in multiple brain areas, including the bilateral parietal cortex, right inferior frontal gyrus and, albeit less clearly, the medial frontal cortex. Individual differences in the duration judgment accuracy were positively correlated with the decoding accuracy of duration in the right parietal cortex, suggesting that individuals with a better timing performance represent duration information in a more distinctive manner. Our study demonstrates that although time representation is widely distributed across frontoparietal regions, neural populations in the right parietal cortex play a crucial role in time estimation

    A Neural Correlate of the Processing of Multi-Second Time Intervals in Primate Prefrontal Cortex

    Get PDF
    Several areas of the brain are known to participate in temporal processing. Neurons in the prefrontal cortex (PFC) are thought to contribute to perception of time intervals. However, it remains unclear whether the PFC itself can generate time intervals independently of external stimuli. Here we describe a group of PFC neurons in area 9 that became active when monkeys recognized a particular elapsed time within the range of 1–7 seconds. Another group of area 9 neurons became active only when subjects reproduced a specific interval without external cues. Both types of neurons were individually tuned to recognize or reproduce particular intervals. Moreover, the injection of muscimol, a GABA agonist, into this area bilaterally resulted in an increase in the error rate during time interval reproduction. These results suggest that area 9 may process multi-second intervals not only in perceptual recognition, but also in internal generation of time intervals
    corecore