6 research outputs found

    Study of the biocompatibility of resorbable mesh prostheses for plastic surgery repair of abdominal wall and small pelvic floor defects

    No full text
    Subject Comparison of physico-chemical and biomedical properties of test specimens of mesh implants based on polydioxanone and polyglycolide, looking for application in gynecology and general surgery. Material and methods. In vitro evaluation of cytotoxicity of samples was performed using the MTT assay. Assessment of in vivo biocompatibility prosthesis was performed on outbred rats by simulating polnosloynogo defect of the anterior abdominal wall, which is sutured to the edges of polydioxanone and polyglycolic prosthesis.As a comparison group using the prosthesis on the basis of detsellyulyarizirovannoy dermis (Permacol). The animals were taken from the experiment 3, 10, 30 and 60 days after surgery. Was conducted macroscopic, tenziometricheskoe, morphometric, immunohistochemical and western blot studies. Results. The test prostheses do not possess cytotoxic properties, but in an in vivo experiment showed different intensity of adhesions, the speed and efficiency of integration with the surrounding tissues, preservation of the biomechanical properties of the severity of the inflammatory response. Conclusion. For some indicators of biocompatibility and efficacy of polydioxanone prosthesis was significantly better than prosthesis from polyglycolide and detsellyulyarizirovannoy dermis. Β© Bionika Media Ltd

    ИсслСдованиС биосовмСстимости Ρ€Π΅Π·ΠΎΡ€Π±ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… сСтчатых ΠΏΡ€ΠΎΡ‚Π΅Π·ΠΎΠ² для пластики Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ стСнки ΠΈ Π΄Π½Π° ΠΌΠ°Π»ΠΎΠ³ΠΎ Ρ‚Π°Π·Π°

    No full text
    Subject Comparison of physico-chemical and biomedical properties of test specimens of mesh implants based on polydioxanone and polyglycolide, looking for application in gynecology and general surgery. Material and methods. In vitro evaluation of cytotoxicity of samples was performed using the MTT assay. Assessment of in vivo biocompatibility prosthesis was performed on outbred rats by simulating polnosloynogo defect of the anterior abdominal wall, which is sutured to the edges of polydioxanone and polyglycolic prosthesis.As a comparison group using the prosthesis on the basis of detsellyulyarizirovannoy dermis (Permacol). The animals were taken from the experiment 3, 10, 30 and 60 days after surgery. Was conducted macroscopic, tenziometricheskoe, morphometric, immunohistochemical and western blot studies. Results. The test prostheses do not possess cytotoxic properties, but in an in vivo experiment showed different intensity of adhesions, the speed and efficiency of integration with the surrounding tissues, preservation of the biomechanical properties of the severity of the inflammatory response. Conclusion. For some indicators of biocompatibility and efficacy of polydioxanone prosthesis was significantly better than prosthesis from polyglycolide and detsellyulyarizirovannoy dermis. Β© Bionika Media Ltd.ЦСль исслСдования. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΈ ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСских свойств ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² сСтчатых ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² Π½Π° основС полидиоксанона ΠΈ ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄Π°, пСрспСктивных для примСнСния Π² Π³ΠΈΠ½Π΅ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΡ†Π΅Π½ΠΊΡƒ цитотоксичности ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² in vitro ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МВВ-тСста. ΠžΡ†Π΅Π½ΠΊΡƒ биосовмСстимости ΠΏΡ€ΠΎΡ‚Π΅Π·ΠΎΠ² in vivo ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° бСспородных крысах ΠΏΡƒΡ‚Π΅ΠΌ модСлирования полнослойного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅ΠΉ Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ стСнки, ΠΊ краям ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ подшивали полидиоксаноновый ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚Π΅Π·. Π’ качСствС Π³Ρ€ΡƒΠΏΠΏΡ‹ сравнСния использовали ΠΏΡ€ΠΎΡ‚Π΅Π· Π½Π° основС Π΄Π΅Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅Ρ€ΠΌΡ‹ (Permacol). Π–ΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π²Ρ‹Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΈΠ· экспСримСнта Π½Π° 3, 10, 30 ΠΈ 60-Π΅ сутки послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ макроскопичСскоС, тСнзиомСтричСскоС, морфомСтричСскоС, иммуногистохимичСскоС ΠΈ вСстСрн-Π±Π»ΠΎΡ‚ исслСдования. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅Π·Ρ‹ Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ цитотоксичСскими свойствами, Π½ΠΎ Π² экспСримСнтС in vivo ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ€Π°Π·Π½ΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ спаСчного процСсса, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ с ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ тканями, ΡΠΎΡ…Ρ€Π°Π½Π½ΠΎΡΡ‚ΡŒ биомСханичСских свойств, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ выраТСнности Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. По ряду ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ биосовмСстимости ΠΈ эффСктивности ΠΏΡ€ΠΎΡ‚Π΅Π· ΠΈΠ· полидиоксанона оказался достовСрно Π»ΡƒΡ‡ΡˆΠ΅, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΎΡ‚Π΅Π· ΠΈΠ· ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄Π° ΠΈ Π΄Π΅Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅Ρ€ΠΌΡ‹

    Development of the bioartificial vaginal wall: An in vitro stage

    No full text
    Objective. To obtain a tissue-engineered construct based on a nonwoven polycaprolactone carrier, human epithelial and stromal cells to make an artificial vagina. Material and methods. Fibrous material based on polycaprolactone was obtained by an electrospinning technique. A capillary method was used to colonize the full-thickness tissue-engineering design by stromal cells and a static method was employed to colonize the surface layer of the construct by vaginal epithelial cells. Results. The vaginal epithelial cells expressed EpSAM and p63; the stromal cells did vimentin and smooth muscle actin. After colonization, the stromal cells were evenly distributed in a 1.5-mm thick matrix; the epithelial cells were arranged in a dense layer on the inner surface of the construct, sinking to a depth of 88.9Β±32.5 ΞΌm. Conclusion. The tissue-engineered construct obtained is similar to the native vagina in architectonics and cell composition. Β© Bionika Media Ltd

    Π ΠΠ—Π ΠΠ‘ΠžΠ’ΠšΠ Π‘Π˜ΠžΠΠ Π’Π˜Π€Π˜Π¦Π˜ΠΠ›Π¬ΠΠžΠ™ Π‘Π’Π•ΠΠšΠ˜ Π’Π›ΠΠ“ΠΠ›Π˜Π©Π: IN VITRO Π‘Π’ΠΠ”Π˜Π―

    No full text
    Objective. To obtain a tissue-engineered construct based on a nonwoven polycaprolactone carrier, human epithelial and stromal cells to make an artificial vagina. Material and methods. Fibrous material based on polycaprolactone was obtained by an electrospinning technique. A capillary method was used to colonize the full-thickness tissue-engineering design by stromal cells and a static method was employed to colonize the surface layer of the construct by vaginal epithelial cells. Results. The vaginal epithelial cells expressed EpSAM and p63; the stromal cells did vimentin and smooth muscle actin. After colonization, the stromal cells were evenly distributed in a 1.5-mm thick matrix; the epithelial cells were arranged in a dense layer on the inner surface of the construct, sinking to a depth of 88.9Β±32.5 ΞΌm. Conclusion. The tissue-engineered construct obtained is similar to the native vagina in architectonics and cell composition. Β© Bionika Media Ltd.ЦСль исслСдования. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции Π½Π° основС Π½Π΅Ρ‚ΠΊΠ°Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ носитСля, ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° для создания искусствСнного Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Волокнистый ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования. Для засСлСния ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ всСй Ρ‚ΠΎΠ»Ρ‰ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции использовали капиллярный ΠΌΠ΅Ρ‚ΠΎΠ΄, для засСлСния ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π° повСрхностного слоя конструкции - статичный ΠΌΠ΅Ρ‚ΠΎΠ΄. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π­ΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π° экспрСссировали EpCAM ΠΈ p63, ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ экспрСссировали Π²ΠΈΠΌΠ΅Π½Ρ‚ΠΈΠ½ ΠΈ Π³Π»Π°Π΄ΠΊΠΎΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΉ Π°ΠΊΡ‚ΠΈΠ½. ПослС засСлСния ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСны Π² матриксС Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 1,5 ΠΌΠΌ; ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ ΠΏΠ»ΠΎΡ‚Π½Ρ‹ΠΌ пластом Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности конструкции, ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ°ΡΡΡŒ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ 88,9Β±32,5 ΠΌΠΊΠΌ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ тканСинТСнСрная конструкция Π±Π»ΠΈΠ·ΠΊΠ° ΠΏΠΎ своСй Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΠΎΠ½ΠΈΠΊΠ΅ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ составу Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Ρƒ

    Nonwoven polycaprolactone scaffolds for tissue engineering: The choice of the structure and the method of cell seeding

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions

    НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ: Π²Ρ‹Π±ΠΎΡ€ структуры ΠΈ способа засСлСния

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions.НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрспСктивными ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π°ΠΌΠΈ для эндопротСзирования. ЗасСлСниС Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ способствуСт Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚Π΅Π·Π° собствСнной ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚Π°. ЦСлью настоящСго исслСдования являлось сравнСниС эффСктивности Ρ‚Ρ€Π΅Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² засСлСния ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Ρ… носитСлСй Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ пространствСнными характСристиками. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, биомСханичСскими свойствами. ЗасСлСниС носитСлСй ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΌΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΏΡƒΠΏΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Ρ‚ΠΈΠΊΠ° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ трСмя способами: статичным, динамичСским ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с использованиСм капиллярного эффСкта. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ распрСдСлСниС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎ повСрхности ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ измСряли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МВВ-тСста. Π‘Ρ‚Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ носитСли с Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ повСрхности, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² основном Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Ρ‚Ρ€Π΅Ρ‚ΠΈ матрикса. ДинамичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ оказался эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ 500 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€. ΠœΠ΅Ρ‚ΠΎΠ΄ засСлСния с использованиСм капиллярного эффСкта Π±Ρ‹Π» эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ 20-30 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π‘ΠΈΠΎΡ€Π΅Π·ΠΎΡ€Π±ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎ-Π»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ подходящими биомСханичСскими свойствами для выполнСния пластики Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² стСнок Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости, ΠΈΠΌΠ΅ΡŽΡ‚ сходноС с матриксом Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ строСниС. Π’Ρ‹Π±ΠΎΡ€ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° засСлСния носитСлСй ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ зависит ΠΎΡ‚ Π΅Π³ΠΎ пространствСнных характСристик - Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ условиями элСктроформования ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°
    corecore