4 research outputs found

    Population Connectivity and Genetic Assessment of Exploited and Natural Populations of Pearl Oysters within a French Polynesian Atoll Lagoon

    No full text
    In French Polynesia, the production and exportation of black pearls through the aquaculture of the black-lip pearl oyster Pinctada margaritifera provide the second largest economic income for the country after tourism. This industry entirely relies on the collection of natural spats from few highly recruiting lagoons. In recent years, pearl oyster producers have experienced variable success rates in spat collection, with significant spatial and temporal variability in spat supply, driving uncertainty in the future of pearl production. This study combines, for the first time in a farmed lagoon, genetic (SNPs), demographic (sex ratio, age), and biophysical data (larval dispersal modelling) to shed new light on population dynamics, connectivity, and spat recruitment in Ahe Atoll, a well-studied pearl farming site. Our results indicate that the geographical structuring of the natural populations and the contribution of both natural and exploited stocks to the production of spats result from the interaction of hydrodynamic features, life history traits and demographic parameters: the northeastern natural populations are older, not well connected to the southwestern natural populations and are not replenished by larvae produced by adjacent exploited populations. Moreover, we observe that the exploited populations did not contribute to larval production during our experiment, despite a sampling period set during the most productive season for spat collection. This is likely the result of a strong male bias in the exploited populations, coupled with a sweepstakes reproductive strategy of the species. Our results warrant further investigations over the future of the northeastern older natural populations and a reflection on the current perliculture techniques

    Isolation, characterization and PCR multiplexing of microsatellite loci for two sub-species of terrestrial isopod Porcellio dilatatus (Crustacea, Oniscidea).

    No full text
    International audienceSeveral microsatellite markers have already been developed for different terrestrial isopod species such as Armadillidium vulgare, A. nasatum and Porcellionides pruinosus. In all these species, the endosymbiont Wolbachia has a feminizing effect that generates a female bias in sex ratio and reduces the number of reproductive males. Thus this can potentially decrease the genetic diversity of host populations. However, in some other isopod species, Wolbachia induces cytoplasmic incompatibility (CI); the most commonly described effect of Wolbachia in arthropods. The CI by rendering some crossings incompatible can reduce the gene flow and strengthen genetic differentiation between isopod populations. To date, the influence of Wolbachia inducing CI on population structure of terrestrial isopods has never been investigated. In this study, we developed 10 polymorphic microsatellite markers shared by two sub-species of Porcellio dilatatus. Crossings between the two sub-species are partially incompatible due to two CI-inducing Wolbachia strains. These new microsatellite markers will allow us to investigate the effect of CI on host genetic differentiation in this species complex

    Experimental evidence of Wolbachia introgressive acquisition between terrestrial isopod subspecies

    No full text
    International audienceWolbachia are the most widespread endosymbiotic bacteria in animals. In many arthropod host species, they manipulate reproduction via several mechanisms that favor their maternal transmission to offspring. Among them, cytoplasmic incompatibility (CI) promotes the spread of the symbiont by specifically decreasing the fertility of crosses involving infected males and uninfected females, via embryo mortality. These differences in reproductive efficiency may select for the avoidance of incompatible mating, a process called reinforcement, and thus contribute to population divergence. In the terrestrial isopod Porcellio dilatatus, the Wolbachia wPet strain infecting the subspecies P. d. petiti induces unidirectional CI with uninfected individuals of the subspecies P. d. dilatatus. To study the consequences of CI on P. d. dilatatus and P. d. petiti hybridization, mitochondrial haplotypes and Wolbachia infection dynamics, we used population cages seeded with different proportions of the 2 subspecies in which we monitored these genetic parameters 5 and 7 years after the initial setup. Analysis of microsatellite markers allowed evaluating the degree of hybridization between individuals of the 2 subspecies. These markers revealed an increase in P. d. dilatatus nuclear genetic signature in all mixed cages, reflecting an asymmetry in hybridization. Hybridization led to the introgressive acquisition of Wolbachia and mitochondrial haplotype from P. d. petiti into nuclear genomes dominated by alleles of P. d. dilatatus. We discuss these results with regards to Wolbachia effects on their host (CI and putative fitness cost), and to a possible reinforcement that may have led to assortative mating, as possible factors contributing to the observed results
    corecore