27 research outputs found

    Surgical outcomes after neoadjuvant ablative dose radiation among patients with borderline resectable and locally advanced pancreas cancer from the multi-institutional phase 2 Stereotactic MR-Guided Adaptive Radiation Therapy (SMART) trial

    Get PDF
    Background: Acute grade 3+ toxicity was rare in the multi-institutional phase 2 stereotactic MR-guided on-table adaptive radiation therapy (SMART) trial (NCT03621644) for locally advanced and borderline resectable pancreatic cancer (LAPC/BRPC). Surgery may be considered after ablative SMART although the feasibility and safety of this is not well understood. Postoperative outcomes of the subset of patients in the SMART trial are examined here. Methods: Trial eligibility included BRPC or LAPC without metastases after a minimum of 3 months of induction chemotherapy. All patients received SMART prescribed to 50 Gy in 5 fractions using an integrated 0.35T MR-radiation therapy device equipped with cutting edge soft tissue tracking, automatic beam gating, and on-table adaptive replanning. Surgery was permitted after SMART, often after multi-disciplinary review. Perioperative details and postoperative outcomes, including morbidity, mortality, and overall survival (OS), were analyzed. Results: 136 patients across 13 sites were enrolled between 2019-2022. 44 patients (32.4%) had surgery after SMART (33 BRPC, 11 LAPC). Surgical procedures included pancreaticoduodenectomy (81.8%), distal pancreatectomy with splenectomy (9.1%), total pancreatectomy (6.8%), and distal pancreatectomy with celiac axis resection (2.3%). 52.3% required vascular resection/reconstruction, a majority of which were venous resections (65.2%), with a smaller proportion needing both venous/ arterial (21.7%), or arterial (13%). Surgery was performed after a mean 51.4 ± 52.8 days from SMART. Postoperative hospitalization was 10.5 ± 8.9 days. Nine patients (20.5%) had Clavien-Dindo complications of grade III or higher; 3 deaths resulted from post-pancreatectomy hemorrhage in patients who had portal vein resection. One-year OS in patients who had surgery versus no surgery after SMART was 66% vs. 43%, respectively. Conclusions: These are the first prospectively evaluated surgical outcomes after 5-fraction ablative SMART for BRPC/LAPC. The rate of surgery for BRPC compares favorably to radiated patients on the Alliance A021501 trial. Despite the use of ablative radiation dose and frequent need for vascular resection, the incidence of serious surgical complications was similar to what is reported after non-ablative radiation therapy. However, several deaths occurred after surgery and we therefore we urge caution when considering surgery after ablative radiation therapy. Further analysis of other variables such as the time between SMART and surgery, approaches to vascular resections, and discrete events such as delayed gastric emptying, operative duration, and post-operative pancreatic fistula are needed to better understand the surgical morbidity seen in these patients

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Inhibiting Smurf1: Biological and Mechanistic Approach

    No full text
    Smurf1 is an E3 ligase in the ubiquitin proteasome system that regulates bone degradation. Within the E3 ligase categories, Smurf1 is a HECT E3 ligase in the NEDD4 family that has been experimentally shown to be genetically microduplicated in patients suffering from osteoporosis. The deletion of Smurf1 in mice has proven to increase the volume of bone density in an age dependent manner. Therefore, it stands to reason that inhibition of Smurf1 via small molecules may be useful in osteoporosis therapy. Given the lack of crystal structure, not much is known about the structure of Smurf1, especially the HECT domain. To date there has been no published data on inhibitors specific to Smurf HECT domain. In the following body of work, we discuss two synthesized inhibitors that inhibit Smurf1 HECT domain and we begin to study its mechanism of action within the protein. We utilize a variety of assays such the traditional auto-ubiquitination assay as well as newer ubiquitin probes such as UbFluor and Ub-Propargylamine. Herein, we discuss potential binding sites for the two compounds through mutations and chimera proteins. Due to the lack of crystal structure, we have created homology models of the compounds against Smurf1 and will attempt to validate them in the future. Lastly, due to the nature of UbFluor, it provides the perfect avenue to be a reliable probe to run high throughput screens (HTS) against Smurf1. We compile a list of compounds that have exhibited potential to be tractable leads in the future

    Assessing wound closure in mice using skin-punch biopsy

    No full text
    Summary: Defects in myofibroblast function may cause wound healing defects in a variety of tissue types. Here we describe a simple skin-punch biopsy approach to screen mouse models for defects in wound closure that does not require extensive surgical training or expensive equipment. Experimental results may serve as an initial proof of concept to determine whether further investigation is necessary or if defects in myofibroblast function observed in other systems also result in reduced skin wound healing. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions

    Get PDF
    Synchronous neural activity occurs throughout the brain in association with normal and pathological brain functions. Despite theoretical work exploring how such neural coordination might facilitate neural computation and be corrupted in disease states, it has proven difficult to test experimentally the causal role of synchrony in such phenomena. Attempts to manipulate neural synchrony often alter other features of neural activity such as firing rate. Here we evaluate a single gene which encodes for the blue-light gated cation channel channelrhodopsin-2 and the yellow-light driven chloride pump halorhodopsin from Natronobacterium pharaonis, linked by a ‘self-cleaving’ 2A peptide. This fusion enables proportional expression of both opsins, sensitizing neurons to being bi-directionally controlled with blue and yellow light, facilitating proportional optical spike insertion and deletion upon delivery of trains of precisely-timed blue and yellow light pulses. Such approaches may enable more detailed explorations of the causal role of specific features of the neural code.National Institutes of Health (U.S) (DP2 OD002002-01)National Science Foundation (U.S.) (0835878)National Science Foundation (U.S.) (0848804)McGovern Institute for Brain Research at MIT (Neurotechnology Award Program)United States. Dept. of DefenseAlfred P. Sloan FoundationJerry Burnett FoundationNARSAD (The Brain and Behavior Research Fund)Society for Neuroscience (Research Award for Innovation in Neuroscience)Massachusetts Institute of Technology. Media LaboratoryBenesse FoundationWallace H. Coulter FoundationHelen Hay Whitney FoundationNational Institutes of Health (U.S) (1K99MH085944

    High-performance genetically targetable optical neural silencing by proton pumps

    No full text
    The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch)1 from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2, 3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue–green light-drivable proton pump from the fungus Leptosphaeria maculans4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of ‘optogenetic’ voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.National Institutes of Health (U.S.) (NIH Director's New Innovator Award (DP2 OD002002-01))National Institutes of Health (U.S.) (grant 0835878)National Science Foundation (U.S.) (grant 0848804)McGovern Institute for Brain Research at MIT (Neurotechnology Award Program)National Institutes of Health (U.S.) (NIH 1K99MH085944)Alfred P. Sloan FoundationUnited States. Dept. of DefenseDr. Gerald Burnett and Marjorie BurnettSFN Research Award for Innovation in NeuroscienceMassachusetts Institute of Technology. Media LaboratoryBenesse FoundationWallace H. Coulter FoundationHelen Hay Whitney FoundationBrain & Behavior Research Foundatio
    corecore