13 research outputs found

    A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China

    No full text
    <div><p>Bisphenol A (BPA) is a high-production-volume chemical that is widely used in polycarbonate plastics and epoxy food-can coatings. Following several studies that have reported adverse effects of BPA over the past decade, other bisphenol analogues, such as bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF), and bisphenol B (BPB), have been gradually developed as substitutes for BPA in several applications. Nevertheless, few studies have reported on the occurrence of compounds other than BPA in foodstuffs. In this study, 289 food samples (13 categories: cereals and cereal products, meat and meat products, fish and seafood, eggs, milk and milk products, bean products, fruits, vegetables, cookies/snacks, beverages, cooking oils, condiments, and others), collected from nine cities in China, were analysed for eight bisphenol analogues using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). BPA and BPF were found widely in foodstuffs at concentrations ranging from below the limit of quantitation (LOQ) to 299 ng g<sup>–1</sup> (mean = 4.94 ng g<sup>–1</sup>) and from below the LOQ to 623 ng g<sup>–1</sup> (mean = 2.50 ng g<sup>–1</sup>), fresh weight, respectively. The highest total concentrations of bisphenols (∑BPs: sum of eight bisphenols) were found in the category of vegetables that included canned products (mean = 27.0 ng g<sup>–1</sup>), followed by fish and seafood (16.5 ng g<sup>–1</sup>) and beverages (15.6 ng g<sup>–1</sup>). ∑BP concentrations (mean = 2–3 ng g<sup>–1</sup>) in milk and milk products, cooking oils, and eggs were low. Food samples sold in metallic cans contained higher mean ∑BP concentrations (56.9 ng g<sup>–1</sup>) in comparison with those packaged in glass (0.43 ng g<sup>–1</sup>), paper (11.9 ng g<sup>–1</sup>), or plastic (6.40 ng g<sup>–1</sup>). The daily dietary intakes of bisphenols were estimated, based on the mean concentrations measured and daily consumption rates of foods, to be 646 and 664 ng kg<sup>–1</sup> bw day<sup>–1</sup> for men and women, respectively.</p></div

    Widespread Occurrence of Benzophenone-Type UV Light Filters in Personal Care Products from China and the United States: An Assessment of Human Exposure

    No full text
    Benzophenone-3 (BP-3) is a sunscreen agent used in a variety of personal care products (PCPs) for the protection of human skin and hair from damage by ultraviolet (UV) radiation. Concerns have been raised over exposure of humans to BP-3, owing to the estrogenic potential of this compound. Nevertheless, the levels and profiles of BP-3 in PCPs and sources of exposure of humans to this estrogenic compound are not well-known. In this study, concentrations of BP-3 were determined in seven categories of 231 PCPs collected from several cities in China (<i>n</i> = 117) and the United States (U.S.) (<i>n</i> = 114), using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). BP-3 was found in the majority (81%) of the samples analyzed, at concentrations as high as 0.148%. The highest BP-3 concentrations (geometric mean [GM]: 548; median: 530 ng/g) were found in skin lotions (including sunscreen lotions), followed by makeup products (284; 221 ng/g). PCPs collected from the U.S. contained higher concentrations of BP-3 than those collected from China. On the basis of the concentrations measured and daily usage rates of PCPs, we estimated the daily intake of BP-3 through dermal absorption from the use of PCPs. The GM and 95th percentile exposure doses to BP-3 were 0.978 and 25.5 Îźg/day, respectively, for adult women in China, which were 2 orders of magnitude lower than those found for adult women in the U.S. (24.4 and 5160 Îźg/day). Skin lotions and face creams contributed to the preponderance of daily BP-3 exposures (>80%)

    Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure

    No full text
    As the concern over the safety of bisphenol A (BPA) continues to grow, this compound is gradually being replaced, in industrial applications, with compounds such as bisphenol F (BPF) and bisphenol S (BPS). Occurrence of bisphenols, including BPA and BPS, has been reported in paper products and in environmental matrices. Information on the occurrence of bisphenols, other than BPA, in foodstuffs, however, is scarce. In this study, several bisphenol analogues, including BPA, BPF, and BPS, were analyzed in foodstuffs (<i>N</i> = 267) collected from Albany, NY, USA, using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Foodstuffs were divided into nine categories of beverages, dairy products, fats and oils, fish and seafood, cereals, meat and meat products, fruits, vegetables, and “others”. Bisphenols were found in the majority (75%) of the food samples, and the total concentrations of bisphenols (ΣBPs: sum of eight bisphenols) were in the range of below the limit of quantification (LOQ) to 1130 ng/g fresh weight, with an overall mean value of 4.38 ng/g. The highest overall mean concentration of ΣBPs was found in the “others” category, which included condiments (preserved, ready-to-serve foods). A sample of mustard (dressing) and ginger, placed in the category of vegetables, contained the highest concentrations of 1130 ng/g for bisphenol F (BPF) and 237 ng/g for bisphenol P (BPP). Concentrations of BPs in beverages (mean = 0.341 ng/g) and fruits (0.698 ng/g) were low. The predominant bisphenol analogues found in foodstuffs were BPA and BPF, which accounted for 42 and 17% of the total BP concentrations, respectively. Canned foods contained higher concentrations of individual and total bisphenols in comparison to foods sold in glass, paper, or plastic containers. On the basis of measured concentrations and daily ingestion rates of foods, the daily dietary intakes of bisphenols (calculated from the mean concentration) were estimated to be 243, 142, 117, 63.6, and 58.6 ng/kg body weight (bw)/day for toddlers, infants, children, teenagers, and adults, respectively

    Determination of Free and Conjugated Forms of Bisphenol A in Human Urine and Serum by Liquid Chromatography–Tandem Mass Spectrometry

    No full text
    Exposure of humans to bisphenol A (BPA), a widely used industrial chemical, is well-known. In humans and animals, conjugation of BPA molecule with glucuronide or sulfate is considered as a mechanism for detoxification. Nevertheless, very few studies have directly measured free, conjugated (e.g., glucuronidated), and substituted (e.g., chlorinated) forms of BPA in human specimens. In this study, free, conjugated (BPA glucuronide or BPAG and BPA disulfate or BPADS), and substituted (chlorinated BPA; mono- [BPAMC], di-[BPADC], and trichloride [BPATrC]) forms of BPA were determined in human urine and serum samples, using solid-phase extraction (SPE) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) techniques. The instrumental calibration for each of the target compounds ranged from 0.01 to 100 ng/mL and showed excellent linearity (<i>r</i> > 0.99). The limits of quantification (LOQs) were 0.01 ng/mL for free BPA and 0.05 ng/mL for the conjugated and substituted BPA. Respective recoveries of the six target compounds spiked into water blanks and sample matrices (urine and serum), and passed through the entire analytical procedure, were 96 ± 14% and 105 ± 18% (mean ± SD) for urine samples and 87 ± 8% and 80 ± 13% for serum samples. The optimal recoveries of BPAG and BPADS in the analytical procedure indicted that no deconjugation occurred during the SPE procedure. The method was applied to measure six target chemicals in urine and serum samples collected from volunteers in Albany, New York. BPA and its derivatives were found in urine samples at concentrations ranging from < LOQ to a few tens of ng/mL. In serum, free and conjugated BPA were detected at sub ng/mL concentrations, whereas BPA chlorides were not detected. The urine and serum samples were also analyzed by enzymatic deconjugation and liquid–liquid extraction (LLE) for the determination of total BPA, and the results were compared with those measured by the SPE method. To our knowledge, this is the first report on the occurrence of BPAG and BPADS in human serum

    A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles

    No full text
    Benzothiazole and its derivatives (BTs) are high production volume chemicals that have been used for several decades in a large number of industrial and consumer products, including vulcanization accelerators, corrosion inhibitors, fungicides, herbicides, algicides, and ultraviolet (UV) light stabilizers. Several benzothiazole derivatives are used commercially, and widespread use of these chemicals has led to ubiquitous occurrence in diverse environmental compartments. BTs have been reported to be dermal sensitizers, respiratory tract irritants, endocrine disruptors, carcinogens, and genotoxicants. This article reviews occurrence and fate of a select group of BTs in the environment, as well as human exposure and toxicity. BTs have frequently been found in various environmental matrices at concentrations ranging from sub-ng/L (surface water) to several tens of Îźg/g (indoor dust). The use of BTs in a number of consumer products, especially in rubber products, has resulted in widespread human exposure. BTs undergo chemical, biological, and photolytic degradation in the environment, creating several transformation products. Of these, 2-thiocyanomethylthio-benzothiazole (2-SCNMeS-BTH) has been shown to be the most toxic. Epidemiological studies have shown excess risks of cancers, including bladder cancer, lung cancer, and leukemia, among rubber factory workers, particularly those exposed to 2-mercapto-benzothiazole (2-SH-BTH). Human exposure to BTs continues to be a concern

    Exposure to MEHP during Pregnancy and Lactation Impairs Offspring Growth and Development by Disrupting Thyroid Hormone Homeostasis

    No full text
    Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites

    Bisphenol Analogues in Sediments from Industrialized Areas in the United States, Japan, and Korea: Spatial and Temporal Distributions

    No full text
    Bisphenol analogues are used in the production of polycarbonate plastics and epoxy resins. Despite the widespread use of bisphenols, few studies have reported the occurrence of compounds other than bisphenol A (BPA) in sediment. In this study, concentrations and profiles of eight bisphenol analogues were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in sediments collected from several industrialized areas in the United States (U.S.), Japan, and Korea. The total concentrations of bisphenols (ΣBPs; sum of eight bisphenols) in sediment ranged from below the limit of quantitation (LOQ) to 25 300 ng/g dry weight (dw), with a mean value of 201 ng/g dw. Sediment samples from Lake Shihwa, Korea, contained the highest concentrations of both individual and total bisphenols. Among individual bisphenols, BPA and bisphenol F (BPF) were the predominant compounds, accounting for 64% and 30% of the total bisphenol concentrations in sediment. We also examined vertical profiles of concentrations of bisphenol analogues in sediment cores from the U.S. and Japan. Sediment cores from the U.S. showed a gradual decline in the concentrations of bisphenols as compared to the past decade. BPA concentrations were found to decline in a sediment core from Tokyo Bay, but bisphenol S (BPS) was more frequently detected in core sections that represent the most recent decade, which is consistent with the replacement of BPA with BPS in some applications since 2001 in Japan

    Occurrence of Eight Bisphenol Analogues in Indoor Dust from the United States and Several Asian Countries: Implications for Human Exposure

    No full text
    Bisphenol A has been reported to be a ubiquitous contaminant in indoor dust, and human exposure to this compound is well documented. Information on the occurrence of and human exposure to other bisphenol analogues is limited. In this study, eight bisphenol analogues, namely 2,2-bis­(4-hydroxyphenyl)­propane (BPA), 4,4′-(hexafluoroisopropylidene)­diphenol (BPAF), 4,4′-(1-phenylethylidene)­bisphenol (BPAP), 2,2-bis­(4-hydroxyphenyl)­butane (BPB), 4,4′-dihydroxydiphenylmethane (BPF), 4,4′-(1,4-phenylenediisopropylidene)­bisphenol (BPP), 4,4′- sulfonyldiphenol (BPS), and 4,4′-cyclohexylidenebisphenol (BPZ), were determined in indoor dust samples (<i>n</i> = 156) collected from the United States (U.S.), China, Japan, and Korea. Samples were extracted by solid–liquid extraction, purified by automated solid phase extraction methods, and determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total concentrations of bisphenols (∑BPs; sum of eight bisphenols) in dust were in the range of 0.026–111 μg/g (geometric mean: 2.29 μg/g). BPA, BPS, and BPF were the three major bisphenols, accounting for >98% of the total concentrations. Other bisphenol analogues were rare or not detected, with the exception of BPAF, which was found in 76% of the 41 samples collected in Korea (geometric mean: 0.0039 μg/g). The indoor dust samples from Korea contained the highest concentrations of both individual and total bisphenols. BPA concentrations in dust were compared among three microenvironments (house, office, and laboratory). The estimated median daily intake (EDI) of ∑BPs through dust ingestion in the U.S., China, Japan, and Korea was 12.6, 4.61, 15.8, and 18.6 ng/kg body weight (bw)/day, respectively, for toddlers and 1.72, 0.78, 2.65, and 3.13 ng/kg bw/day, respectively, for adults. This is the first report on the occurrence of bisphenols, other than BPA, in indoor dust

    Assessing and Reducing the Toxicity of 3D-Printed Parts

    No full text
    3D printing is gaining popularity by providing a tool for fast, cost-effective, and highly customizable fabrication. However, little is known about the toxicity of 3D-printed objects. In this work, we assess the toxicity of printed parts from two main classes of commercial 3D printers, fused deposition modeling and stereolithography. We assessed the toxicity of these 3D-printed parts using zebrafish (<i>Danio rerio</i>), a widely used model organism in aquatic toxicology. Zebrafish embryos were exposed to 3D-printed parts and monitored for rates of survival, hatching, and developmental abnormalities. We found that parts from both types of printers were measurably toxic to zebrafish embryos, with STL-printed parts significantly more toxic than FDM-printed parts. We also developed a simple post-printing treatment (exposure to ultraviolet light) that largely mitigates the toxicity of the STL-printed parts. Our results call attention to the need for strategies for the safe disposal of 3D-printed parts and printer waste materials

    Occurrence and Human Exposure of <i>p</i>‑Hydroxybenzoic Acid Esters (Parabens), Bisphenol A Diglycidyl Ether (BADGE), and Their Hydrolysis Products in Indoor Dust from the United States and Three East Asian Countries

    No full text
    <i>p</i>-Hydroxybenzoic acid esters (parabens) and bisphenol A diglycidyl ether (BADGE) are widely present in personal care products, food packages, and material coatings. Nevertheless, little is known about the occurrence of these compounds in indoor dust. In this study, we collected 158 indoor dust samples from the U.S., China, Korea, and Japan and determined the concentrations of 11 target chemicals, viz., six parabens and their common hydrolysis product, 4-hydroxybenzoic acid (4-HB), as well as BADGE and its three hydrolysis products (BADGE·H<sub>2</sub>O, BADGE·2H<sub>2</sub>O, and BADGE·HCl·H<sub>2</sub>O). All of the target compounds were found in dust samples from four countries. Concentrations of sum of six parabens in dust were on the order of several hundred to several thousands of nanogram per gram. Geometric mean concentrations of BADGEs in dust ranged from 1300 to 2890 ng/g among four countries. Methyl paraben (MeP), propyl paraben (PrP), BADGE·2H<sub>2</sub>O, and BADGE·HCl·H<sub>2</sub>O were the predominant compounds found in dust samples. This is the first report of BADGE and its hydrolysis products (BADGEs) in indoor dust samples and of parabens in indoor dust from Asian countries. On the basis of the measured concentrations of target chemicals, we estimated the daily intake (EDI) via dust ingestion. The EDIs of parabens via dust ingestion were 5–10 times higher in children than in adults. Among the four countries studied, the EDIs of parabens (5.4 ng/kg-bw/day) and BADGEs (6.5 ng/kg-bw/day) through dust ingestion were the highest for children in Korea and Japan
    corecore