167 research outputs found

    Fabrication and magnetic properties of Sm2Co17 and Sm2Co17/Fe7Co3 magnetic nanowires via AAO templates

    Get PDF
    AbstractThe Sm2Co17 single-phase and Sm2Co17/Fe7Co3 double-phase nanowire arrays with smaller diameter (around 50nm) have been fabricated into the anodic aluminum oxide (AAO) templates by direct-current electrodeposition. The crystal structure and micrograph of these nanowire arrays were characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy (TEM). It is found that the as-deposited Sm2Co17 nanowires have the amorphous microstructure. The magnetic hysteresis loops obtained by vibrating sample magnetometer (VSM) show that the easily magnetized direction of the Sm2Co17 single-phase and Sm2Co17/Fe7Co3 double-phase nanowire arrays is parallel to the nanowire arrays and the exchange coupling interaction in nanocomposite Sm2Co17/Fe7Co3 is discussed. The study of the Sm2Co17 single-phase and Sm2Co17/Fe7Co3 double-phase nanowires with small diameter may open up new opportunities for the design and control of nanostructures such as the fabrication of magnetic recording devices

    Postseismic Restoration of the Ecological Environment in the Wenchuan Region Using Satellite Data

    Get PDF
    Using Landsat remote-sensing data combined with geological information extracted from ALOS and Sentinel-1A radar data, the ecological environment was evaluated in the years 2007, 2008, 2013, and 2017 through gray correlation analysis on the basis of the construction of the pressure-state-response model. The main objective of this research was to assess the ecological environment changes in Wenchuan County before and after the earthquake, and to provide reference for future social development and policy implementation. The grading map of the ecological environment was obtained for every year, and the ecological restoration status of Wenchuan County after the earthquake was evaluated. The results showed that the maximum area cover at a “safe” ecological level was over 46.4% in 2007. After the 2008 earthquake, the proportion of “unsafe” and “very unsafe” ecological levels was 40.0%, especially around the Lancang River and the western mountain area in Wenchuan County. After five years of restoration, ecological conditions were improved, up to 48.0% in the region. The areas at “critically safe” and above recovered to 85.5% in 2017 within nine years after the deadly Wenchuan earthquake of May 12, 2008. In this paper, we discuss the results of detailed analysis of ecological improvements and correlation with the degrees of pressure, state, and response layers of the Pressure-State-Response (PSR) model

    Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018

    Get PDF
    Due to urban expansion, economic development, and rapid population growth, land use/land cover (LULC) is changing in major cities around the globe. Quantitative analysis of LULC change is important for studying the corresponding impact on the ecosystem service value (ESV) that helps in decision-making and ecosystem conservation. Based on LULC data retrieved from remote-sensing interpretation, we computed the changes of ESV associated with the LULC dynamics using the benefits transfer method and geographic information system (GIS) technologies during the period of 1992–2018 following self-modified coefficients which were corrected by net primary productivity (NPP). This improved approach aimed to establish a regional value coefficients table for facilitating the reliable evaluation of ESV. The main objective of this research was to clarify the trend and spatial patterns of LULC changes and their influence on ecosystem service values and functions. Our results show a continuous reduction in total ESV from United States (US) 1476.25millionin1992,toUS1476.25 million in 1992, to US 1410.17, 1335.10,and1335.10, and 1190.56 million in 2001, 2009, and 2018, respectively; such changes are attributed to a notable loss of farmland and forest land from 1992–2018. The elasticity of ESV in response to changes in LULC shows that 1% of land transition may have caused average changes of 0.28%, 0.34%, and 0.50% during the periods of 1992–2001, 2001–2009, and 2009–2018, respectively. This study provides important information useful for land resource management and for developing strategies to address the reduction of ESV

    Regional Forest Volume Estimation by Expanding LiDAR Samples Using Multi-Sensor Satellite Data

    Get PDF
    Accurate information regarding forest volume plays an important role in estimating afforestation, timber harvesting, and forest ecological services. Traditionally, operations on forest growing stock volume using field measurements are labor-intensive and time-consuming. Recently, remote sensing technology has emerged as a time-cost efficient method for forest inventory. In the present study, we have adopted three procedures, including samples expanding, feature selection, and results generation and evaluation. Extrapolating the samples from Light Detection and Ranging (LiDAR) scanning is the most important step in satisfying the requirement of sample size for nonparametric methods operation and result in accuracy improvement. Besides, mean decrease Gini (MDG) methodology embedded into Random Forest (RF) algorithm served as a selector for feature measure; afterwards, RF and K-Nearest Neighbor (KNN) were adopted in subsequent forest volume prediction. The results show that the retrieval of Forest volume in the entire area was in the range of 50–360 m3/ha, and the results from the two models show a better consistency while using the sample combination extrapolated by the optimal threshold value (2 × 10−4), leading to the best performances of RF (R2 = 0.618, root mean square error, RMSE = 43.641 m3/ha, mean absolute error, MAE = 33.016 m3/ha), followed by KNN (R2 = 0.617, RMSE = 43.693 m3/ha, MAE = 32.534 m3/ha). The detailed analysis that is discussed in the present paper clearly shows that expanding image-derived LiDAR samples helps in refining the prediction of regional forest volume while using satellite data and nonparametric models

    Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts

    Get PDF
    Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent growth period to study the vegetation restoration after the Greater Hinggan Mountain forest fire in the year 1987. The influence of phenology on vegetation monitoring was analyzed through three aspects: band characteristics, normalized difference vegetation index (NDVI) and disturbance index (DI) values. The comparison of the band characteristics shows that in the blue band and the red band, the average reflectance values of the study area after eliminating phenological influence is lower than that without eliminating the phenological influence in each year. In the infrared band, the average reflectance value after eliminating the influence of phenology is greater than the value with phenological influence in almost every year. In the second shortwave infrared band, the average reflectance value without phenological influence is lower than that with phenological influence in almost every year. The analysis results of NDVI and DI values in the study area of each year show that the NDVI and DI curves vary considerably without eliminating the phenological influence, and there is no obvious trend. After eliminating the phenological influence, the changing trend of the NDVI and DI values in each year is more stable and shows that the forest in the region was impacted by other factors in some years and also the recovery trend. The results show that the spatio-temporal data fusion approach used in this study can eliminate vegetation phenology effectively and the elimination of the phenology impact provides more reliable information about changes in vegetation regions affected by the forest fires. The results will be useful as a reference for future monitoring and management of forest resources

    Superconductivity in the nodal-line compound La3_3Pt3_3Bi4_4

    Full text link
    Owing to the specific topological states in nodal-line semimetals, novel topological superconductivity is expected to emerge in these systems. In this letter, by combination of the first-principles calculations and resistivity, susceptibility and specific heat measurements, we demonstrate that La3_3Pt3_3Bi4_4 is a topologically nontrivial nodal-ring semimetal protected by the gliding-mirror symmetry even in the presence of spin-orbit coupling. Meanwhile, we discover bulk superconductivity with a transition temperature of \sim1.1 K, and an upper critical field of \sim0.41 T. These findings demonstrate that La3_3Pt3_3Bi4_4 provides a material platform for studying novel superconductivity in the nodal-ring system

    ALMA [N \i\i ] 205 \mu m Imaging Spectroscopy of the Lensed Submillimeter galaxy ID 141 at redshift 4.24

    Full text link
    We present the Atacama Large Millimeter/submillimeter Array (ALMA) observation of the Sub-millimeter galaxy (SMG) ID 141 at z=4.24 in the [N II] 205 μ\mum line (hereafter [N II]) and the underlying continuum at (rest-frame) 197.6 μ\mum. Benefiting from lensing magnification by a galaxy pair at z=0.595, ID 141 is one of the brightest z>4>4 SMGs. At the angular resolutions of 1.2\sim1.2'' to 1.51.5'' (16.91'' \sim6.9 kpc), our observation clearly separates, and moderately resolves the two lensed images in both continuum and line emission at S/N>5\rm S/N>5 . Our continuum-based lensing model implies an averaged amplification factor of 5.8\sim5.8 and reveals that the de-lensed continuum image has the S\'ersic index 0.95\simeq 0.95 and the S\'ersic radius of 0.18(1.24\sim0.18'' (\sim 1.24 kpc). Furthermore, the reconstructed [N II] velocity field in the source plane is dominated by a rotation component with a maximum velocity of 300\sim 300 km/s at large radii, indicating a dark matter halo mass of 1012M\sim 10^{12}M_{\odot}. This, together with the reconstructed velocity dispersion field being smooth and modest in value (<100<100 km/s) over much of the outer parts of the galaxy, favours the interpretation of ID 141 being a disk galaxy dynamically supported by rotation. The observed [N II]/CO (7-6) and [N II]/[C II] 158 μ\mum line luminosity ratios, which are consistent with the corresponding line ratio vs. far-infrared color correlation from local luminous infrared galaxies, imply a de-lensed star formation rate of (1.8±0.6)×103M1.8\pm 0.6)\times10^3M_\odot/yr and provide an independent estimate on the size of the star-forming region 0.70.3+0.30.7^{+0.3}_{-0.3} kpc in radius.Comment: 13 pages, 6 figures, 2 tables, accepted by ApJ, lensing model code can be found here https://gitlab.com/cxylzlx/tiny_len
    corecore