4 research outputs found

    Identification and Optimization of Small Molecule Pyrazolopyrimidine TLR7 Agonists for Applications in Immuno-oncology

    No full text
    Small molecule toll-like receptor (TLR) 7 agonists have gathered considerable interest as promising therapeutic agents for applications in cancer immunotherapy. Herein, we describe the development and optimization of a series of novel TLR7 agonists through systematic structure–activity relationship studies focusing on modification of the phenylpiperidine side chain. Additional refinement of ADME properties culminated in the discovery of compound 14, which displayed nanomolar reporter assay activity and favorable drug-like properties. Compound 14 demonstrated excellent in vivo pharmacokinetic/pharmacodynamic profiles and synergistic antitumor activity when administered in combination with aPD1 antibody, suggesting opportunities of employing 14 in immuno-oncology therapies with immune checkpoint blockade agents

    Discovery of Novel TLR7 Agonists as Systemic Agent for Combination With aPD1 for Use in Immuno-oncology

    No full text
    We have designed and developed novel and selective TLR7 agonists that exhibited potent receptor activity in a cell-based reporter assay. In vitro, these agonists significantly induced secretion of cytokines IL-6, IL-1β, IL-10, TNFa, IFNa, and IP-10 in human and mouse whole blood. Pharmacokinetic and pharmacodynamic studies in mice showed a significant secretion of IFNα and TNFα cytokines. When combined with aPD1 in a CT-26 tumor model, the lead compound showed strong synergistic antitumor activity with complete tumor regression in 8/10 mice dosed using the intravenous route. Structure–activity relationship studies enabled by structure-based designs of TLR7 agonists are disclosed

    Discovery of Potent and Orally Bioavailable Dihydropyrazole GPR40 Agonists

    No full text
    G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp<sup>3</sup>/sp<sup>2</sup> character of the chemotype, we identified BMS-986118 (compound <b>4</b>), which showed potent and selective GPR40 agonist activity <i>in vitro</i>. <i>In vivo</i>, compound <b>4</b> demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models

    Discovery of Pyrrolidine-Containing GPR40 Agonists: Stereochemistry Effects a Change in Binding Mode

    No full text
    A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-<i>cis</i>-CF<sub>3</sub> to the pyrrolidine improves the human GPR40 binding <i>K</i><sub>i</sub> and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers <b>(</b><i><b>R,R</b></i><b>)-68</b> and <b>(</b><i><b>S,S</b></i><b>)-68</b> have differential effects on the radioligand used for the binding assay, with <b>(</b><i><b>R,R</b></i><b>)-68</b> potentiating the radioligand and <b>(</b><i><b>S,S</b></i><b>)-68</b> displacing the radioligand. Compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b> activates both G<sub>q</sub>-coupled intracellular Ca<sup>2+</sup> flux and G<sub>s</sub>-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b>, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b> significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series
    corecore