261 research outputs found

    Bump hunting with non-Gaussian kernels

    Full text link
    It is well known that the number of modes of a kernel density estimator is monotone nonincreasing in the bandwidth if the kernel is a Gaussian density. There is numerical evidence of nonmonotonicity in the case of some non-Gaussian kernels, but little additional information is available. The present paper provides theoretical and numerical descriptions of the extent to which the number of modes is a nonmonotone function of bandwidth in the case of general compactly supported densities. Our results address popular kernels used in practice, for example, the Epanechnikov, biweight and triweight kernels, and show that in such cases nonmonotonicity is present with strictly positive probability for all sample sizes n\geq3. In the Epanechnikov and biweight cases the probability of nonmonotonicity equals 1 for all n\geq2. Nevertheless, in spite of the prevalence of lack of monotonicity revealed by these results, it is shown that the notion of a critical bandwidth (the smallest bandwidth above which the number of modes is guaranteed to be monotone) is still well defined. Moreover, just as in the Gaussian case, the critical bandwidth is of the same size as the bandwidth that minimises mean squared error of the density estimator. These theoretical results, and new numerical evidence, show that the main effects of nonmonotonicity occur for relatively small bandwidths, and have negligible impact on many aspects of bump hunting.Comment: Published at http://dx.doi.org/10.1214/009053604000000715 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optical addressing of an individual erbium ion in silicon

    Full text link
    The detection of electron spins associated with single defects in solids is a critical operation for a range of quantum information and measurement applications currently under development. To date, it has only been accomplished for two centres in crystalline solids: phosphorus in silicon using electrical readout based on a single electron transistor (SET) and nitrogen-vacancy centres in diamond using optical readout. A spin readout fidelity of about 90% has been demonstrated with both electrical readout and optical readout, however, the thermal limitations of the electrical readout and the poor photon collection efficiency of the optical readout hinder achieving the high fidelity required for quantum information applications. Here we demonstrate a hybrid approach using optical excitation to change the charge state of the defect centre in a silicon-based SET, conditional on its spin state, and then detecting this change electrically. The optical frequency addressing in high spectral resolution conquers the thermal broadening limitation of the previous electrical readout and charge sensing avoids the difficulties of efficient photon collection. This is done with erbium in silicon and has the potential to enable new architectures for quantum information processing devices and to dramatically increase the range of defect centres that can be exploited. Further, the efficient electrical detection of the optical excitation of single sites in silicon is a major step in developing an interconnect between silicon and optical based quantum computing technologies.Comment: Corrected the third affiliation. Corrected one cross-reference of "Fig. 3b" to "Fig. 3c". Corrected the caption of Fig. 3a by changing (+-)1 to

    Burnout in medical students: A systematic review of experiences in Chinese medical schools

    Full text link
    © 2017 The Author(s). Background: To identify the: extent to which medical students in China experience burnout; factors contributing to this; potential solutions to reduce and prevent burnout in this group; and the extent to which the experiences of Chinese students reflect the international literature. Methods: Systematic review and narrative synthesis. Key words, synonyms and subject headings were used to search five electronic databases in addition to manual searching of relevant journals. Titles and abstracts of publications between 1st January 1989-31st July 2016 were screened by two reviewers and checked by a third. Full text articles were screened against the eligibility criteria. Data on design, methods and key findings were extracted and synthesised. Results: Thirty-three studies were eligible and included in the review. Greater levels of burnout were generally identified in males, more senior medical students, and those who already experienced poorer psychological functioning. Few studies explored social or contextual factors influencing burnout, but those that did suggest that factors such as the degree of social support or the living environment surrounding a student may be a determinant of burnout. Conclusions: Greater understanding of the social and contextual determinants of burnout amongst medical students in China is essential towards identifying solutions to reduce and prevent burnout in this group

    Quantifying the effect of color processing on blood and damaged tissue detection in Whole Slide Images

    Get PDF
    Histological tissue examination has been a longstanding practice for cancer diagnosis where pathologists identify the presence of tumors on glass slides. Slides acquired from laboratory routine may contain unintentional artifacts due to complications in surgical resection. Blood and damaged tissue artifacts are two common problems associated with transurethral resection of the bladder tumor. Differences in histotechnical procedures among laboratories may also result in color variations and minor inconsistencies in outcome. A digitized version of a glass slide known as a whole slide image (WSI) holds enormous potential for automated diagnostics. The presence of irrelevant areas in a WSI undermines diagnostic value for pathologists as well as computational pathology (CPATH) systems. Therefore, automatic detection and exclusion of diagnostically irrelevant areas may lead to more reliable predictions. In this paper, we are detecting blood and damaged tissue against diagnostically relevant tissue. We gauge the effectiveness of transfer learning against training from scratch. Best models give 0.99 and 0.89 F1 scores for blood and damaged tissue detection. Since blood and damaged tissue have subtle color differences, we assess the impact of color processing methods on the binary classification performance of five well-known architectures. Finally, we remove the color to understand its importance against morphology on classification performance.acceptedVersio

    Single rare-earth ions as atomic-scale probes in ultra-scaled transistors

    Full text link
    Continued dimensional scaling of semiconductor devices has driven information technology into vastly diverse applications. As the size of devices approaches fundamental limits, metrology techniques with nanometre resolution and three-dimensional (3D) capabilities are desired for device optimisation. For example, the performance of an ultra-scaled transistor can be strongly influenced by the local electric field and strain. Here we study the spectral response of single erbium ions to applied electric field and strain in a silicon ultra-scaled transistor. Stark shifts induced by both the overall electric field and the local charge environment are observed. Further, changes in strain smaller than 3×10−63\times 10^{-6} are detected, which is around two orders of magnitude more sensitive than the standard techniques used in the semiconductor industry. These results open new possibilities for non-destructive 3D mapping of the local strain and electric field in the channel of ultra-scaled transistors, using the single erbium ions as ultra-sensitive atomic probes.Comment: 10+5 pages, 4+3 figure

    Sub-megahertz homogeneous linewidth for Er in Si via in situ single photon detection

    Full text link
    We studied the optical properties of a resonantly excited trivalent Er ensemble in Si accessed via in situ single photon detection. A novel approach which avoids nanofabrication on the sample is introduced, resulting in a highly efficient detection of 70 excitation frequencies, of which 63 resonances have not been observed in literature. The center frequencies and optical lifetimes of all resonances have been extracted, showing that 5% of the resonances are within 1 GHz of our electrically detected resonances and that the optical lifetimes range from 0.5 ms up to 1.5 ms. We observed inhomogeneous broadening of less than 400 MHz and an upper bound on the homogeneous linewidth of 1.4 MHz and 0.75 MHz for two separate resonances, which is a reduction of more than an order of magnitude observed to date. These narrow optical transition properties show that Er in Si is an excellent candidate for future quantum information and communication applications.Comment: 12 pages, 13 figure

    Millisecond electron spin coherence time for erbium ions in silicon

    Full text link
    Spins in silicon that are accessible via a telecom-compatible optical transition are a versatile platform for quantum information processing that can leverage the well-established silicon nanofabrication industry. Key to these applications are long coherence times on the optical and spin transitions to provide a robust system for interfacing photonic and spin qubits. Here, we report telecom-compatible Er3+ sites with long optical and electron spin coherence times, measured within a nuclear spin-free silicon crystal (<0.01% 29Si) using optical detection. We investigate two sites and find 0.1 GHz optical inhomogeneous linewidths and homogeneous linewidths below 70 kHz for both sites. We measure the electron spin coherence time of both sites using optically detected magnetic resonance and observe Hahn echo decay constants of 0.8 ms and 1.2 ms at around 11 mT. These optical and spin properties of Er3+:Si are an important milestone towards using optically accessible spins in silicon for a broad range of quantum information processing applications.Comment: 14 pages, 6 figure

    Conclusions and recommendations of a who expert consultation meeting on iron supplementation for infants and young children in malaria endemic areas [Conclusions et recommandations à l\u27issue de la consultation de l\u27oms sur la lutte contre la carence martiale chez le nourrisson et le jeune enfant dans les pays d\u27endémie palustre]

    Get PDF
    This article presents the results of an expert consultation meeting aimed at evaluating the safety and public health implications of administering supplemental iron to infants and young children in malaria-endemic areas. Participants at this meeting that took place in Lyon, France on June 12-14, 2006 reached consensus on several important issues related to iron supplementation for infants and young children in malaria-endemic areas. The conclusions in this report apply specifically to regions where malaria is endemic
    • …
    corecore