13 research outputs found

    Research on measuring method of the angular displacement of muzzle vibration

    Get PDF
    The angular displacement of the muzzle vibration has importance influence on the firing dispersion of gun. In order to solve the measuring problem on the angular displacement of the muzzle vibration in firing environment, a kind of measuring method of the angular displacement of the muzzle vibration based on the laser and the triangle principle was presented, and its measuring system was developed. The laser beam was sent by a laser. After the laser beam was reflected by a reflector on muzzle, the reflective beam was received by the position sensitive detector (PSD). Combining the optical distance parameter and the triangle relation, the angular displacement of the muzzle vibration could be obtained. The measuring error analysis of the system and the verification of the firing environment in shooting range were made. The performances of the measuring system were that the measuring range of the angular displacement was ±35', its angle resolution was 0.1', its relative errors under the different illumination conditions were less than 2 %. The measuring system can meet the needs of the gun measurement

    Study on measuring method of the angular displacement of muzzle vibration for the small caliber gun

    Get PDF
    In order to solving the key technique of the angular displacement of muzzle vibration for the small caliber gun, a measuring method of double eddy current displacement sensors for the angular displacement of muzzle vibration is proposed. Two sensors are installed at the measuring points which are distributed near the muzzle. Then, by the triangle transformation method, the vertical and horizontal linear displacement of the muzzle vibration can be transformed to the vertical and horizontal angular displacement. It has been verified by the firing test that the method is non-contact and has the capability of anti-muzzle-flash and anti-shock, and that the test accuracy can meet the requirement of the gun firing environment. By this method, the law of the angular displacement of muzzle vibration under three running firing is obtained during the process that after projectile exit, about three circles of attenuation vibration for the muzzle happen, and then the next projectile begins to leave the muzzle. It shows that the average value of the angular displacement of muzzle vibration is 1.93 minute in azimuth and 1.42 minute in elevation

    Nonuniform Rotation Parameter Estimation in ISAR Imaging by Multiple Scattering Point Set Matching

    No full text

    Investigation of Catalytic Ozonation of Recalcitrant Organic Chemicals in Aqueous Solution over Various ZSM-5 Zeolites

    No full text
    Catalytic ozonation processes (COPs) are an emerging technology for wastewater treatments. NaZSM-5 zeolites in three different SiO2/Al2O3 ratios (31, 45, and 120) and their metallic oxides loaded samples were compared for COP of nitrobenzene solution. NaZSM-5(120) showed high total organic carbon (TOC) removals (70.2–74.0%) by adsorption relative to NaZSM-5(45) (0.4–0.6%) at various initial pH conditions. NaZSM-5(31) was obtained by NaOH treatment of NaZSM-5(45) and displayed 20.9–23.8% of TOC removals by adsorption. In COPs, the different ZSM-5 zeolites exhibited various TOC removals and different reaction pathways. COP-NaZSM-5(120) showed high TOC removals compared to COP-NaZSM-5(45) and COP-NaZSM-5(31). The repeated uses of zeolites in COPs were performed to understand the reaction pathways and contribution of adsorption versus ozonation (i.e., catalytic oxidation and/or direct ozonation). Both adsorption and direct ozonation in COP-NaZSM-5(120) contributed TOC removal for the first use, whereas direct ozonation and •OH mediated oxidation dominated the process for eight repeated uses. Direct ozonation and •OH-mediated oxidation controlled the COP-NaZSM-5(45) process for the first and eight repeated uses. Adsorption and direct ozonation governed the COP-NaZSM-5(31) process for the first use, whereas the direct ozonation dominated it for eight repeated uses. In COPs, NaZSM-5(120) and NaZSM-5(45) showed the catalytic activity, whereas NaZSM-5(31) displayed negligible catalytic activity. The high catalytic activity of NaZSM-5(120) may be due to more Si-O bonds on zeolite surfaces. The results revealed that loading of Mg oxide on ZSM-5 zeolites can increase catalytic activity in COPs. These results show the application potential of ZSM-5 zeolites in ozonation of recalcitrant chemical wastewaters

    Image_1_An occluded cherry tomato recognition model based on improved YOLOv7.jpeg

    No full text
    The typical occlusion of cherry tomatoes in the natural environment is one of the most critical factors affecting the accurate picking of cherry tomato picking robots. To recognize occluded cherry tomatoes accurately and efficiently using deep convolutional neural networks, a new occluded cherry tomato recognition model DSP-YOLOv7-CA is proposed. Firstly, images of cherry tomatoes with different degrees of occlusion are acquired, four occlusion areas and four occlusion methods are defined, and a cherry tomato dataset (TOSL) is constructed. Then, based on YOLOv7, the convolution module of the original residual edges was replaced with null residual edges, depth-separable convolutional layers were added, and jump connections were added to reuse feature information. Then, a depth-separable convolutional layer is added to the SPPF module with fewer parameters to replace the original SPPCSPC module to solve the problem of loss of small target information by different pooled residual layers. Finally, a coordinate attention mechanism (CA) layer is introduced at the critical position of the enhanced feature extraction network to strengthen the attention to the occluded cherry tomato. The experimental results show that the DSP-YOLOv7-CA model outperforms other target detection models, with an average detection accuracy (mAP) of 98.86%, and the number of model parameters is reduced from 37.62MB to 33.71MB, which is better on the actual detection of cherry tomatoes with less than 95% occlusion. Relatively average results were obtained on detecting cherry tomatoes with a shade level higher than 95%, but such cherry tomatoes were not targeted for picking. The DSP-YOLOv7-CA model can accurately recognize the occluded cherry tomatoes in the natural environment, providing an effective solution for accurately picking cherry tomato picking robots.</p
    corecore