3 research outputs found

    Quantification of Cancer Biomarkers in Serum Using Scattering-Based Quantitative Single Particle Intensity Measurement with a Dark-Field Microscope

    No full text
    In this work, we developed a simple yet robust single particle scattering intensity measurement method for the quantification of cancer-related biomarkers. The design is based on the plasmonic coupling effect between noble metal nanoparticles. First, the primary and secondary antibodies were conjugated onto the surface of 60 nm gold nanoparticles (AuNPs, act as capture probes) and 50 nm silver nanoparticles (AgNPs, act as signal amplification probes) respectively. In the presence of corresponding antigen, a sandwiched immunocomplex was formed, resulting a significantly enhanced scattering intensity in contrast to that of individual probes. By measuring the intensity change of the particles with a dark-field microscope (DFM), the amount of target protein could be accurately quantified. As a proof of concept experiment, quantification of three types of antigens, including carcinoembryonic antigen (CEA), prostate-specific antigen (PSA) and alpha fetoprotein (AFP) by this platform was demonstrated with limit of detection (LOD) of 1.7, 3.3, and 5.9 pM, respectively, with a linear dynamic range of 0 to 300 pM. Furthermore, to elucidate the potential in clinical application, the content of antigens in a serum sample was also quantified directly without additional sample pretreatment. In order to validate the reliability of this method, the measured result was also compared with that obtained by regular enzyme-linked immunosorbent assay (ELISA) kit, showing good consistency between these two data sets. Therefore, owing to the simplicity and accuracy of this method, it could be potentially applied for massive disease screening in clinical assay in the future

    A Zero Cross-Talk Ratiometric Two-Photon Probe for Imaging of Acid pH in Living Cells and Tissues and Early Detection of Tumor in Mouse Model

    No full text
    Acid–base disorders disrupt proper cellular functions, which are associated with diverse diseases. Development of highly sensitive pH probes being capable of detecting and monitoring the minor changes of pH environment in living systems is of considerable interest to diagnose disease as well as investigate biochemical processes in vivo. We report herein two novel high-resolution ratiometric two-photon (TP) fluorescent probes, namely, PSIOH and PSIBOH derived from carbazole–oxazolidine π-conjugated system for effective sensing and monitoring acid pH in a biological system. Remarkably, PSIOH exhibited the largest emission shift of ∼169 nm from 435 to 604 nm upon pH changing from basic to acidic with an ideal p<i>K</i><sub>a</sub> value of 6.6 within a linear pH variation range of 6.2–7.0, which is highly desirable for high-resolution tracking and imaging the minor fluctuation of pH in live cells and tissues. PSIOH also exhibits high pH sensitivity, excellent photostability, and reversibility as well as low cytotoxicity. More importantly, this probe was successfully applied to (i) sense and visualize the pH alteration in HeLa cells caused by various types of exogenous stimulation and (ii) detect and differentiate cancer and tumors in liver tissues and a mouse model, realizing its practical <i>in vitro</i> and <i>in vivo</i> applications

    Effective Theranostic Cyanine for Imaging of Amyloid Species in Vivo and Cognitive Improvements in Mouse Model

    No full text
    We report herein an investigation of carbazole-based cyanine, (<i>E</i>)-4-(2-(9-(2-(2-methoxyethoxy)­ethyl)-9<i>H</i>-carbazol-3-yl)-vinyl)-1-methyl-quinolin-1-iumiodide (SLM), as an effective theranostic agent for Alzheimer’s disease (AD). This cyanine exhibited desirable multifunctional and biological properties, including amyloid-β (Aβ)-oligomerization inhibition, blood–brain barrier permeability, low neurotoxicity, neuroprotective effect against Aβ-induced toxicities, high selectivity and strong binding interactions with Aβ peptide/species, good biostability, as well as strong fluorescence enhancement upon binding to Aβ species for diagnosis and therapy of AD. This cyanine has been successfully applied to perform near-infrared in vivo imaging of Aβ species in transgenic AD mouse model. The triple transgenic AD mice intraperitoneally treated with SLM showed significant recovery of cognitive deficits. Furthermore, those SLM-treated mice exhibited a substantial decrease in both of oligomeric Aβ contents and tau proteins in their brain, which was attributed to the induction of autophagic flux. These findings demonstrated for the first time that SLM is an effective theranostic agent with in vivo efficacy for diagnosis and treatment of AD in mouse models
    corecore