45,368 research outputs found

    Evolution of the single-hole spectral function across a quantum phase transition in the anisotropic-triangular-lattice antiferromagnet

    Full text link
    We study the evolution of the single-hole spectral function when the ground state of the anisotropic-triangular-lattice antiferromagnet changes from the incommensurate magnetically-ordered phase to the spin-liquid state. In order to describe both of the ground states on equal footing, we use the large-N approach where the transition between these two phases can be obtained by controlling the quantum fluctuations via an 'effective' spin magnitude. Adding a hole into these ground states is described by a t-J type model in the slave-fermion representation. Implications of our results to possible future ARPES experiments on insulating frustrated magnets, especially Cs2_2CuCl4_4, are discussed.Comment: 8 pages, 7 figure

    Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method

    Get PDF
    Using the Fock-Schwinger proper time method, we calculate the induced Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum electrodynamics with a bμψˉγμγ5ψb_\mu \bar{\psi}\gamma^\mu \gamma_5 \psi term. Our result to all orders in bb coincides with a recent linear-in-bb calculation by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev. Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with the nonperturbative-in-bb propagator.Comment: 11 pages, no figur

    Lensed Arcs and Inner Structure of Abell 697

    Full text link
    We present new optical observations of the z=0.282 cluster Abell 697 from the Keck II telescope. Images show an unusual disturbed structure in the cD halo and a previously unknown faint gravitational lens arc. A spectrum of the arc did not yield a redshift, but its spectrum and colors suggest it lies at z>1.3. We construct models to reproduce the arc that show the potential is likely to be highly elliptical. We suggest that this cluster may have undergone a recent merger and is in the process of forming its cD galaxy. Analysis of X-ray data from ROSAT and ASCA suggests that the merging process is sufficiently advanced that the gas in the cluster has relaxed, and A697 lies near the L_x-T_x relation for normal clusters.Comment: LaTeX; 12 pages, 3 figures, submitted to ApJ Letter

    High Density Preheating Effects on Q-ball Decays and MSSM Inflation

    Full text link
    Non-perturbative preheating decay of post-inflationary condensates often results in a high density, low momenta, non-thermal gas. In the case where the non-perturbative classical evolution also leads to Q-balls, this effect shields them from instant dissociation, and may radically change the thermal history of the universe. For example, in a large class of inflationary scenarios, motivated by the MSSM and its embedding in string theory, the reheat temperature changes by a multiplicative factor of 101210^{12}.Comment: 4 page

    Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    Get PDF
    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking

    Adjacency labeling schemes and induced-universal graphs

    Full text link
    We describe a way of assigning labels to the vertices of any undirected graph on up to nn vertices, each composed of n/2+O(1)n/2+O(1) bits, such that given the labels of two vertices, and no other information regarding the graph, it is possible to decide whether or not the vertices are adjacent in the graph. This is optimal, up to an additive constant, and constitutes the first improvement in almost 50 years of an n/2+O(logn)n/2+O(\log n) bound of Moon. As a consequence, we obtain an induced-universal graph for nn-vertex graphs containing only O(2n/2)O(2^{n/2}) vertices, which is optimal up to a multiplicative constant, solving an open problem of Vizing from 1968. We obtain similar tight results for directed graphs, tournaments and bipartite graphs

    Calculation of reduced density matrices from correlation functions

    Full text link
    It is shown that for solvable fermionic and bosonic lattice systems, the reduced density matrices can be determined from the properties of the correlation functions. This provides the simplest way to these quantities which are used in the density-matrix renormalization group method.Comment: 4 page

    Random Vibrational Networks and Renormalization Group

    Full text link
    We consider the properties of vibrational dynamics on random networks, with random masses and spring constants. The localization properties of the eigenstates contrast greatly with the Laplacian case on these networks. We introduce several real-space renormalization techniques which can be used to describe this dynamics on general networks, drawing on strong disorder techniques developed for regular lattices. The renormalization group is capable of elucidating the localization properties, and provides, even for specific network instances, a fast approximation technique for determining the spectra which compares well with exact results.Comment: 4 pages, 3 figure
    corecore