130 research outputs found

    The Conversation: Deep Audio-Visual Speech Enhancement

    Full text link
    Our goal is to isolate individual speakers from multi-talker simultaneous speech in videos. Existing works in this area have focussed on trying to separate utterances from known speakers in controlled environments. In this paper, we propose a deep audio-visual speech enhancement network that is able to separate a speaker's voice given lip regions in the corresponding video, by predicting both the magnitude and the phase of the target signal. The method is applicable to speakers unheard and unseen during training, and for unconstrained environments. We demonstrate strong quantitative and qualitative results, isolating extremely challenging real-world examples.Comment: To appear in Interspeech 2018. We provide supplementary material with interactive demonstrations on http://www.robots.ox.ac.uk/~vgg/demo/theconversatio

    You said that?

    Full text link
    We present a method for generating a video of a talking face. The method takes as inputs: (i) still images of the target face, and (ii) an audio speech segment; and outputs a video of the target face lip synched with the audio. The method runs in real time and is applicable to faces and audio not seen at training time. To achieve this we propose an encoder-decoder CNN model that uses a joint embedding of the face and audio to generate synthesised talking face video frames. The model is trained on tens of hours of unlabelled videos. We also show results of re-dubbing videos using speech from a different person.Comment: https://youtu.be/LeufDSb15Kc British Machine Vision Conference (BMVC), 201

    VoxCeleb2: Deep Speaker Recognition

    Full text link
    The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.Comment: To appear in Interspeech 2018. The audio-visual dataset can be downloaded from http://www.robots.ox.ac.uk/~vgg/data/voxceleb2 . 1806.05622v2: minor fixes; 5 page

    FaceFilter: Audio-visual speech separation using still images

    Full text link
    The objective of this paper is to separate a target speaker's speech from a mixture of two speakers using a deep audio-visual speech separation network. Unlike previous works that used lip movement on video clips or pre-enrolled speaker information as an auxiliary conditional feature, we use a single face image of the target speaker. In this task, the conditional feature is obtained from facial appearance in cross-modal biometric task, where audio and visual identity representations are shared in latent space. Learnt identities from facial images enforce the network to isolate matched speakers and extract the voices from mixed speech. It solves the permutation problem caused by swapped channel outputs, frequently occurred in speech separation tasks. The proposed method is far more practical than video-based speech separation since user profile images are readily available on many platforms. Also, unlike speaker-aware separation methods, it is applicable on separation with unseen speakers who have never been enrolled before. We show strong qualitative and quantitative results on challenging real-world examples.Comment: Under submission as a conference paper. Video examples: https://youtu.be/ku9xoLh62

    Lip Reading Sentences in the Wild

    Full text link
    The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem - unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) a 'Watch, Listen, Attend and Spell' (WLAS) network that learns to transcribe videos of mouth motion to characters; (2) a curriculum learning strategy to accelerate training and to reduce overfitting; (3) a 'Lip Reading Sentences' (LRS) dataset for visual speech recognition, consisting of over 100,000 natural sentences from British television. The WLAS model trained on the LRS dataset surpasses the performance of all previous work on standard lip reading benchmark datasets, often by a significant margin. This lip reading performance beats a professional lip reader on videos from BBC television, and we also demonstrate that visual information helps to improve speech recognition performance even when the audio is available

    Disentangled Speech Embeddings using Cross-modal Self-supervision

    Full text link
    The objective of this paper is to learn representations of speaker identity without access to manually annotated data. To do so, we develop a self-supervised learning objective that exploits the natural cross-modal synchrony between faces and audio in video. The key idea behind our approach is to tease apart--without annotation--the representations of linguistic content and speaker identity. We construct a two-stream architecture which: (1) shares low-level features common to both representations; and (2) provides a natural mechanism for explicitly disentangling these factors, offering the potential for greater generalisation to novel combinations of content and identity and ultimately producing speaker identity representations that are more robust. We train our method on a large-scale audio-visual dataset of talking heads `in the wild', and demonstrate its efficacy by evaluating the learned speaker representations for standard speaker recognition performance.Comment: ICASSP 2020. The first three authors contributed equally to this wor

    Deep Lip Reading: a comparison of models and an online application

    Full text link
    The goal of this paper is to develop state-of-the-art models for lip reading -- visual speech recognition. We develop three architectures and compare their accuracy and training times: (i) a recurrent model using LSTMs; (ii) a fully convolutional model; and (iii) the recently proposed transformer model. The recurrent and fully convolutional models are trained with a Connectionist Temporal Classification loss and use an explicit language model for decoding, the transformer is a sequence-to-sequence model. Our best performing model improves the state-of-the-art word error rate on the challenging BBC-Oxford Lip Reading Sentences 2 (LRS2) benchmark dataset by over 20 percent. As a further contribution we investigate the fully convolutional model when used for online (real time) lip reading of continuous speech, and show that it achieves high performance with low latency.Comment: To appear in Interspeech 201

    ASR is all you need: cross-modal distillation for lip reading

    Full text link
    The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.Comment: ICASSP 202
    • …
    corecore