The objective of this paper is to learn representations of speaker identity
without access to manually annotated data. To do so, we develop a
self-supervised learning objective that exploits the natural cross-modal
synchrony between faces and audio in video. The key idea behind our approach is
to tease apart--without annotation--the representations of linguistic content
and speaker identity. We construct a two-stream architecture which: (1) shares
low-level features common to both representations; and (2) provides a natural
mechanism for explicitly disentangling these factors, offering the potential
for greater generalisation to novel combinations of content and identity and
ultimately producing speaker identity representations that are more robust. We
train our method on a large-scale audio-visual dataset of talking heads `in the
wild', and demonstrate its efficacy by evaluating the learned speaker
representations for standard speaker recognition performance.Comment: ICASSP 2020. The first three authors contributed equally to this wor