32,696 research outputs found

    Minimal Theoretical Uncertainties in Inflationary Predictions

    Get PDF
    During inflation, primordial energy density fluctuations are created from approximate de Sitter vacuum quantum fluctuations redshifted out of the horizon after which they are frozen as perturbations in the background curvature. In this paper we demonstrate that there exists an intrinsic theoretical uncertainty in the inflationary predictions for the curvature perturbations due to the failure of the well known prescriptions to specify the vacuum uniquely. Specifically, we show that the two often used prescriptions for defining the initial vacuum state -- the Bunch-Davies prescription and the adiabatic vacuum prescription (even if the adiabaticity order to which the vacuum is specified is infinity) -- fail to specify the vacuum uniquely in generic inflationary spacetimes in which the total duration of inflation is finite. This conclusion holds despite the absence of any trans-Planckian effects or effective field theory cutoff related effects. We quantify the uncertainty which is applicable to slow roll inflationary scenarios as well as for general FRW spacetimes and find that the uncertainty is generically small. This uncertainty should be treated as a minimal uncertainty that underlies all curvature perturbation calculations.Comment: LaTeX file, 35 pages; some typos correcte

    Gravity Waves as a Probe of Hubble Expansion Rate During An Electroweak Scale Phase Transition

    Full text link
    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to LISA and BBO projected sensitivities.Comment: 28 pages, 2 figures

    On the gravitational production of superheavy dark matter

    Get PDF
    The dark matter in the universe can be in the form of a superheavy matter species (WIMPZILLA). Several mechanisms have been proposed for the production of WIMPZILLA particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of WIMPZILLA gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X < H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor typographical error correcte
    • …
    corecore