32,724 research outputs found
Inverse Avalanches On Abelian Sandpiles
A simple and computationally efficient way of finding inverse avalanches for
Abelian sandpiles, called the inverse particle addition operator, is presented.
In addition, the method is shown to be optimal in the sense that it requires
the minimum amount of computation among methods of the same kind. The method is
also conceptually nice because avalanche and inverse avalanche are placed in
the same footing.Comment: 5 pages with no figure IASSNS-HEP-94/7
Adjacency labeling schemes and induced-universal graphs
We describe a way of assigning labels to the vertices of any undirected graph
on up to vertices, each composed of bits, such that given the
labels of two vertices, and no other information regarding the graph, it is
possible to decide whether or not the vertices are adjacent in the graph. This
is optimal, up to an additive constant, and constitutes the first improvement
in almost 50 years of an bound of Moon. As a consequence, we
obtain an induced-universal graph for -vertex graphs containing only
vertices, which is optimal up to a multiplicative constant,
solving an open problem of Vizing from 1968. We obtain similar tight results
for directed graphs, tournaments and bipartite graphs
Study of pesudoscalar transition form factors within light front quark model
We study the transition form factors of the pesudoscalar mesons (
and ) as functions of the momentum transfer within the
light-front quark model. We compare our results with the recent experimental
data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties
from the quark masses, we illustrate that our predicted form factors can fit
with all the data, including those at the large regions.Comment: 10 pages, 4 figures, accepted for publication in Phys. Rev.
Olig2/Plp-positive progenitor cells give rise to Bergmann glia in the cerebellum.
NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre-Lox systems in vivo with two different mouse lines, the Plp-Cre-ER(T2)/Rosa26-EYFP and Olig2-Cre-ER(T2)/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2+ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2+ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic-ischemic injury, but the ability of NG2+ cells to give rise to Bergmann glia and astrocytes remains unchanged. Overall, our study reveals a novel Bergmann glia fate of Olig2/Plp-positive NG2 progenitors, demonstrates the differentiation of these progenitors into various functional glial cell types, and provides significant insights into the fate and function of Olig2/Plp-positive progenitor cells in health and disease
INCORPORATING NUTRIENTS IN FOOD DEMAND ANALYSIS
Two levels version of the Rotterdam demand systems were developed using utility theory with additional nutrient variables. Income, price, and nutrient demand elasticities were estimated. Results show that some nutrients are important factors in determining the demand for food items.Consumer/Household Economics, Food Consumption/Nutrition/Food Safety,
A General Design Rule for Bearing Failure of Bolted Connections Between Cold-formed Steel Strips
This paper presents the results of a finite element investigation on the structural performance of cold-formed steel bolted connections. A parametric study on various connection configurations was performed to relate the bearing resistances of cold-formed steel bolted connections with steel strengths and thicknesses, and bolt diameters. A semi-empirical design rule for bearing resistances of bolted connections based on finite element results is proposed in which the bearing resistances are directly related with the design yield strength, and the design tensile strength of steel strips, steel thickness, and also with bolt diameters. Design expressions for resistance contributions due to both bearing and friction actions are given after calibration against finite element results
SUSY QCD Corrections to Higgs Pair Production from Bottom Quark Fusion
We present a complete next-to-leading order (NLO) calculation for the total
cross section for inclusive Higgs pair production via bottom-quark fusion at
the CERN Large Hadron Collider (LHC) in the minimal supersymmetric standard
model (MSSM) and the minimal supergravity model (mSUGRA). We emphasize the
contributions of squark and gluino loops (SQCD) and the decoupling properties
of our results for heavy squark and gluino masses. The enhanced couplings of
the b quark to the Higgs bosons in supersymmetric models with large tanb yield
large NLO SQCD corrections in some regions of parameter space.Comment: 24 pages, 10 figure
Coordination of passive systems under quantized measurements
In this paper we investigate a passivity approach to collective coordination
and synchronization problems in the presence of quantized measurements and show
that coordination tasks can be achieved in a practical sense for a large class
of passive systems.Comment: 40 pages, 1 figure, submitted to journal, second round of revie
- …