1,721 research outputs found

    An Efficient Approach for Computing Optimal Low-Rank Regularized Inverse Matrices

    Full text link
    Standard regularization methods that are used to compute solutions to ill-posed inverse problems require knowledge of the forward model. In many real-life applications, the forward model is not known, but training data is readily available. In this paper, we develop a new framework that uses training data, as a substitute for knowledge of the forward model, to compute an optimal low-rank regularized inverse matrix directly, allowing for very fast computation of a regularized solution. We consider a statistical framework based on Bayes and empirical Bayes risk minimization to analyze theoretical properties of the problem. We propose an efficient rank update approach for computing an optimal low-rank regularized inverse matrix for various error measures. Numerical experiments demonstrate the benefits and potential applications of our approach to problems in signal and image processing.Comment: 24 pages, 11 figure

    Quantum criticality in a double quantum-dot system

    Get PDF
    We discuss the realization of the quantum-critical non-Fermi liquid state, originally discovered within the two-impurity Kondo model, in double quantum-dot systems. Contrary to the common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries, and is only unstable to charge transfer between the two dots. We propose an experimental set-up where such charge transfer processes are suppressed, allowing a controlled approach to the quantum critical state. We also discuss transport and scaling properties in the vicinity of the critical point.Comment: 4 pages, 3 figs; (v2) final version as publishe

    Goal-oriented Uncertainty Quantification for Inverse Problems via Variational Encoder-Decoder Networks

    Full text link
    In this work, we describe a new approach that uses variational encoder-decoder (VED) networks for efficient goal-oriented uncertainty quantification for inverse problems. Contrary to standard inverse problems, these approaches are \emph{goal-oriented} in that the goal is to estimate some quantities of interest (QoI) that are functions of the solution of an inverse problem, rather than the solution itself. Moreover, we are interested in computing uncertainty metrics associated with the QoI, thus utilizing a Bayesian approach for inverse problems that incorporates the prediction operator and techniques for exploring the posterior. This may be particularly challenging, especially for nonlinear, possibly unknown, operators and nonstandard prior assumptions. We harness recent advances in machine learning, i.e., VED networks, to describe a data-driven approach to large-scale inverse problems. This enables a real-time goal-oriented uncertainty quantification for the QoI. One of the advantages of our approach is that we avoid the need to solve challenging inversion problems by training a network to approximate the mapping from observations to QoI. Another main benefit is that we enable uncertainty quantification for the QoI by leveraging probability distributions in the latent space. This allows us to efficiently generate QoI samples and circumvent complicated or even unknown forward models and prediction operators. Numerical results from medical tomography reconstruction and nonlinear hydraulic tomography demonstrate the potential and broad applicability of the approach.Comment: 28 pages, 13 figure

    Efficient learning methods for large-scale optimal inversion design

    Get PDF
    In this work, we investigate various approaches that use learning from training data to solve inverse problems, following a bi-level learning approach. We consider a general framework for optimal inversion design, where training data can be used to learn optimal regularization parameters, data fidelity terms, and regularizers, thereby resulting in superior variational regularization methods. In particular, we describe methods to learn optimal p and q norms for L p − L q regularization and methods to learn optimal parameters for regularization matrices defined by covariance kernels. We exploit efficient algorithms based on Krylov projection methods for solving the regularized problems, both at training and validation stages, making these methods well-suited for large-scale problems. Our experiments show that the learned regularization methods perform well even when there is some inexactness in the forward operator, resulting in a mixture of model and measurement error.</p
    • …
    corecore