43,356 research outputs found

    Effects of turbulence mixing, variable properties, and vaporization on spray droplet combustion

    Get PDF
    Combustion of liquid fuels in the form of spray droplets is simulated numerically. Various vaporization models are examined as to their performance in finite element calculations involving a turbulent flow field. The Eulerian coordinate for the gas and Lagrangian coordinate for the liquid spray droplets are coupled through source terms being updated in the equations of continuity, momentum, and energy. The k-epsilon and modified eddy breakup models are used for simulating turbulent spray combustion flow field. Numerical results for the droplet trajectories, droplet heating, recirculation characteristics, and effects of evaporation models are evaluated. It is also shown that the finite element method is advantageous in dealing with complex geometries, complex boundary conditions, adaptive unstructured grids

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    Analytical and experimental study of two concentric cylinders coupled by a fluid gap

    Get PDF
    From a structural point of view a liquid coolant type nuclear reactor consists of a heavy steel vessel containing the core and related mechanical components and filled with a hot fluid. This vessel is protected from the severe environment of the core by a shielding structure, the thermal liner, which is usually a relatively thin steel cylinder concentric with the reactor vessel and separated from it by a gap filled with the coolant fluid. This arrangement leads to a potential vibration problem if the fundamental frequency, or one of the higher natural vibration frequencies, of this liner system is close to the frequency of some vibration source present in the reactor vessel. The shell rigidly clamped at its base and free at the top was investigated since it is a better description of the conditions encountered in typical reactor designs
    corecore