1,338 research outputs found

    The MASSIVE Survey - VIII. Stellar Velocity Dispersion Profiles and Environmental Dependence of Early-Type Galaxies

    Full text link
    We measure the radial profiles of the stellar velocity dispersions, σ(R)\sigma(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute KK-band magnitude MK<25.3M_K < -25.3 mag, or stellar mass M>4×1011MM_* > 4 \times 10^{11} M_\odot, within 108 Mpc. Our wide-field 107" ×\times 107" IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner\gamma_{\rm inner} and γouter\gamma_{\rm outer} of σ(R)\sigma(R). While γinner\gamma_{\rm inner} is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter\gamma_{\rm outer} we find 36% to have rising outer dispersion profiles, 30% to be flat within the uncertainties, and 34% to be falling. The fraction of galaxies with rising outer profiles increases with MM_* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter\gamma_{\rm outer} is similar for brightest group galaxies, satellites, and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4h_4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.Comment: Accepted/in press, MNRA

    The MASSIVE Survey - VII. The Relationship of Angular Momentum, Stellar Mass and Environment of Early-Type Galaxies

    Full text link
    We analyse the environmental properties of 370 local early-type galaxies (ETGs) in the MASSIVE and ATLAS3D surveys, two complementary volume-limited integral-field spectroscopic (IFS) galaxy surveys spanning absolute KK-band magnitude 21.5>MK>26.6-21.5 > M_K > -26.6, or stellar mass 8×109<M<2×1012M8 \times 10^{9} < M_* < 2 \times 10^{12} M_\odot. We find these galaxies to reside in a diverse range of environments measured by four methods: group membership (whether a galaxy is a brightest group/cluster galaxy, satellite, or isolated), halo mass, large-scale mass density (measured over a few Mpc), and local mass density (measured within the NNth neighbour). The spatially resolved IFS stellar kinematics provide robust measurements of the spin parameter λe\lambda_e and enable us to examine the relationship among λe\lambda_e, MM_*, and galaxy environment. We find a strong correlation between λe\lambda_e and MM_*, where the average λe\lambda_e decreases from 0.4\sim 0.4 to below 0.1 with increasing mass, and the fraction of slow rotators fslowf_{\rm slow} increases from 10\sim 10% to 90%. We show for the first time that at fixed MM_*, there are almost no trends between galaxy spin and environment; the apparent kinematic morphology-density relation for ETGs is therefore primarily driven by MM_* and is accounted for by the joint correlations between MM_* and spin, and between MM_* and environment. A possible exception is that the increased fslowf_{\rm slow} at high local density is slightly more than expected based only on these joint correlations. Our results suggest that the physical processes responsible for building up the present-day stellar masses of massive galaxies are also very efficient at reducing their spin, in any environment.Comment: Accepted to MNRA

    Population Pharmacokinetics and Pharmacodynamics of Extended-Infusion Piperacillin and Tazobactam in Critically Ill Children

    Get PDF
    The study objective was to evaluate the population pharmacokinetics and pharmacodynamics of extended-infusion piperacillintazobactam in children hospitalized in an intensive care unit. Seventy-two serum samples were collected at steady state from 12 patients who received piperacillin-tazobactam at 100/12.5 mg/kg of body weight every 8 h infused over 4 h. Population pharmacokinetic analyses were performed using NONMEM, and Monte Carlo simulations were performed to estimate the piperacillin pharmacokinetic profiles for dosing regimens of 80 to 100 mg/kg of the piperacillin component given every 6 to 8 h and infused over 0.5, 3, or 4 h. The probability of target attainment (PTA) for a cumulative percentage of the dosing interval that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (TMIC) of\u3e50% was calculated at MICs ranging from 0.25 to 64 mg/liter. The mean ± standard deviation (SD) age, weight, and estimated glomerular filtration rate were 5 ± 3 years, 17 ± 6.2 kg, and 118 ± 41 ml/min/1.73m2, respectively. A one-compartment model with zero-order input and first-order elimination best fit the pharmacokinetic data for both drugs. Weight was significantly associated with piperacillin clearance, and weight and sex were significantly associated with tazobactam clearance. Pharmacokinetic parameters (mean ± SD) for piperacillin and tazobactam were as follows: clearance, 0.22 ± 0.07 and 0.19 ± 0.07 liter/h/kg, respectively; volume of distribution, 0.43 ± 0.16 and 0.37 ± 0.14 liter/kg, respectively. All extended-infusion regimens achieved PTAs of\u3e90% at MICs of/liter. Only the 3-h infusion regimens given every 6 h achieved PTAs of\u3e90% at an MIC of 32 mg/liter. For susceptible bacterial pathogens, piperacillin-tazobactam doses of\u3e80/10 mg/kg given every 8 h and infused over 4 h achieve adequate pharmacodynamic exposures in critically ill children

    The MASSIVE Survey - X. Misalignment between Kinematic and Photometric Axes and Intrinsic Shapes of Massive Early-Type Galaxies

    Full text link
    We use spatially resolved two-dimensional stellar velocity maps over a 107"×107"107"\times 107" field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5M10^{11.5}M_\odot in the MASSIVE survey. We measure the misalignment angle Ψ\Psi between the kinematic and photometric axes and identify local features such as velocity twists and kinematically distinct components. We find 46% of the sample to be well aligned (Ψ<15\Psi < 15^{\circ}), 33% misaligned, and 21% without detectable rotation (non-rotators). Only 24% of the sample are fast rotators, the majority of which (91%) are aligned, whereas 57% of the slow rotators are misaligned with a nearly flat distribution of Ψ\Psi from 1515^{\circ} to 9090^{\circ}. 11 galaxies have Ψ60\Psi \gtrsim 60^{\circ} and thus exhibit minor-axis ("prolate") rotation in which the rotation is preferentially around the photometric major axis. Kinematic misalignments occur more frequently for lower galaxy spin or denser galaxy environments. Using the observed misalignment and ellipticity distributions, we infer the intrinsic shape distribution of our sample and find that MASSIVE slow rotators are consistent with being mildly triaxial, with mean axis ratios of b/a=0.88b/a=0.88 and c/a=0.65c/a=0.65. In terms of local kinematic features, 51% of the sample exhibit kinematic twists of larger than 2020^{\circ}, and 2 galaxies have kinematically distinct components. The frequency of misalignment and the broad distribution of Ψ\Psi reported here suggest that the most massive early-type galaxies are mildly triaxial, and that formation processes resulting in kinematically misaligned slow rotators such as gas-poor mergers occur frequently in this mass range.Comment: Accepted to MNRA

    DNA repair gene XRCC1 polymorphisms and bladder cancer risk

    Get PDF
    BACKGROUND: Cigarette smoking and chemical occupational exposure are the main known risk factors for bladder transitional cell carcinoma (TCC). Oxidative DNA damage induced by carcinogens present in these exposures requires accurate base excision repair (BER). The XRCC1 protein plays a crucial role in BER by acting as a scaffold for other BER enzymes. Variants in the XRCC1 gene might alter protein structure or function or create alternatively spliced proteins which may influence BER efficiency and hence affect individual susceptibility to bladder cancer. Recent epidemiological studies have shown inconsistent associations between these polymorphisms and bladder cancer. To clarify the situation, we conducted a comprehensive analysis of 14 XRCC1 polymorphisms in a case-control study involving more than 1100 subjects. RESULTS: We found no evidence of an association between any of the 14 XRCC1 polymorphisms and bladder cancer risk. However, we found carriage of the variant Arg280His allele to be marginally associated with increased bladder cancer risk compared to the wild-type genotype (adjusted odds ratio [95% confidence interval], 1.50 [0.98–2.28], p = 0.06). The association was stronger for current smokers such that individuals carrying the variant 280His allele had a two to three-fold increased risk of bladder cancer compared to those carrying the wildtype genotype (p = 0.09). However, the evidence for gene-environment interaction was not statistically significant (p = 0.45). CONCLUSION: We provide no evidence of an association between polymorphisms in XRCC1 and bladder cancer risk, although our study had only limited power to detect the association for low frequency variants, such as Arg280His

    Efficacy of a ML336 Derivative Against Venezuelan and Eastern Equine Encephalitis Viruses

    Get PDF
    Currently, there are no licensed human vaccines or antivirals for treatment of or prevention from infection with encephalitic alphaviruses. Because epidemics are sporadic and unpredictable, and endemic disease is common but rarely diagnosed, it is difficult to identify all populations requiring vaccination; thus, an effective post-exposure treatment method is needed to interrupt ongoing outbreaks. To address this public health need, we have continued development of ML336 to deliver a molecule with prophylactic and therapeutic potential that could be relevant for use in natural epidemics or deliberate release scenario for Venezuelan equine encephalitis virus (VEEV). We report findings from in vitro assessments of four analogs of ML336, and in vivo screening of three of these new derivatives, BDGR-4, BDGR-69 and BDGR-70. The optimal dosing for maximal protection was observed at 12.5 mg/kg/day, twice daily for 8 days. BDGR-4 was tested further for prophylactic and therapeutic efficacy in mice challenged with VEEV Trinidad Donkey (TrD). Mice challenged with VEEV TrD showed 100% and 90% protection from lethal disease when treated at 24 and 48 h post-infection, respectively. We also measured 90% protection for BDGR-4 in mice challenged with Eastern equine encephalitis virus. In additional assessments of BDGR-4 in mice alone, we observed no appreciable toxicity as evaluated by clinical chemistry indicators up to a dose of 25 mg/kg/day over 4 days. In these same mice, we observed no induction of interferon. Lastly, the resistance of VEEV to BDGR-4 was evaluated by next-generation sequencing which revealed specific mutations in nsP4, the viral polymerase

    The MASSIVE Survey - XII Connecting Stellar Populations of Early-Type Galaxies to Kinematics and Environment

    Full text link
    We measure the stellar populations as a function of radius for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude M_K < -25.3 mag, or stellar mass M* 4x10^11 M_sun, within 108 Mpc. We are able to measure reliable stellar population parameters for individual galaxies out to 10-20 kpc (1-3 R_e) depending on the galaxy. Focusing on ~R_e (~10 kpc), we find significant correlations between the abundance ratios, sigma, and M* at large radius, but we also find that the abundance ratios saturate in the highest-mass bin. We see a strong correlation between the kurtosis of the line of sight velocity distribution (h4) and the stellar population parameters beyond R_e. Galaxies with higher radial anisotropy appear to be older, with metal-poorer stars and enhanced [alpha/Fe]. We suggest that the higher radial anisotropy may derive from more accretion of small satellites. Finally, we see some evidence for correlations between environmental metrics (measured locally and on >5 Mpc scales) and the stellar populations, as expected if satellites are quenched earlier in denser environments.Comment: 17 pages, 7 figures, Appendix not included here due to size constraints. Posted after responding to referee's comment

    Recycling of dissolved iron in the North Pacific Subtropical Gyre

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawco, N. J., Yang, S.-C., Pinedo-Gonzalez, P., Black, E. E., Kenyon, J., Ferron, S., Bian, X., & John, S. G. Recycling of dissolved iron in the North Pacific Subtropical Gyre. Limnology and Oceanography, 67(11), (2022): 2448-2465, https://doi.org/10.1002/lno.12212.The importance of iron as a limiting nutrient in the open ocean is widely recognized, but there is substantial uncertainty about the rate that it cycles in the marine environment. Here, we combine measurements from the water column, sediment traps, and incubations to constrain Fe turnover during summer at Station ALOHA in the North Pacific Subtropical Gyre. Using low levels of 57Fe–58Fe double spike, measured with high precision by multi-collector inductively coupled plasma mass spectrometry, we find Fe uptake rates of 30–60 pM d−1 throughout the euphotic zone. Dissolved Fe turnover times are estimated at 10–15 d in the mixed layer and 1–3 d near the deep chlorophyll maximum. Aerosol Fe supply inferred from a thorium isotope mass balance indicates that the dissolved Fe residence time is approximately 6 months in the upper euphotic zone (0–75 m), relative to external sources, and 2 months in the lower euphotic zone (75–150 m). To reconcile these observations, the average Fe atom must be recycled over 25 times at Station ALOHA in both the upper and lower euphotic zones (an “Fe ratio” equal to 0.04 and 0.03, respectively), a level of conservation that has only been documented in Fe-limited regions thus far. At steady state, this scenario requires an aerosol Fe solubility of 4.5%, which is similar to dissolution experiments from Pacific Ocean aerosols. Our results suggest that the oligotrophic ocean is capable of recycling iron efficiently even when these ecosystems are not demonstrably iron-limited.This work was also supported by the Simons Foundation (602538 and 823167 to N.J.H., 329108 to S.G.J) and National Science Foundation grants 2022969 to N.J.H. and 1911990 to S.F
    corecore