35,374 research outputs found

    Minimal Theoretical Uncertainties in Inflationary Predictions

    Get PDF
    During inflation, primordial energy density fluctuations are created from approximate de Sitter vacuum quantum fluctuations redshifted out of the horizon after which they are frozen as perturbations in the background curvature. In this paper we demonstrate that there exists an intrinsic theoretical uncertainty in the inflationary predictions for the curvature perturbations due to the failure of the well known prescriptions to specify the vacuum uniquely. Specifically, we show that the two often used prescriptions for defining the initial vacuum state -- the Bunch-Davies prescription and the adiabatic vacuum prescription (even if the adiabaticity order to which the vacuum is specified is infinity) -- fail to specify the vacuum uniquely in generic inflationary spacetimes in which the total duration of inflation is finite. This conclusion holds despite the absence of any trans-Planckian effects or effective field theory cutoff related effects. We quantify the uncertainty which is applicable to slow roll inflationary scenarios as well as for general FRW spacetimes and find that the uncertainty is generically small. This uncertainty should be treated as a minimal uncertainty that underlies all curvature perturbation calculations.Comment: LaTeX file, 35 pages; some typos correcte

    Gravity Waves as a Probe of Hubble Expansion Rate During An Electroweak Scale Phase Transition

    Full text link
    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to LISA and BBO projected sensitivities.Comment: 28 pages, 2 figures

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    On the gravitational production of superheavy dark matter

    Get PDF
    The dark matter in the universe can be in the form of a superheavy matter species (WIMPZILLA). Several mechanisms have been proposed for the production of WIMPZILLA particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of WIMPZILLA gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X < H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor typographical error correcte

    Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method

    Get PDF
    Using the Fock-Schwinger proper time method, we calculate the induced Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum electrodynamics with a bμψˉγμγ5ψb_\mu \bar{\psi}\gamma^\mu \gamma_5 \psi term. Our result to all orders in bb coincides with a recent linear-in-bb calculation by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev. Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with the nonperturbative-in-bb propagator.Comment: 11 pages, no figur

    VIVA, VLA Imaging of Virgo spirals in Atomic gas: I. The Atlas & The HI Properties

    Full text link
    We present the result of a new VLA HI Imaging survey of Virgo galaxies, VIVA (the VLA Imaging survey of Virgo galaxies in Atomic gas). The survey includes high resolution HI data of 53 carefully selected late type galaxies (48 spirals and 5 irregular systems). The goal is to study environmental effects on HI gas properties of cluster galaxies to understand which physical mechanisms affect galaxy evolution in different density regions, and to establish how far out the impact of the cluster reaches. As a dynamically young cluster, Virgo contains examples of galaxies experiencing a variety of environmental effects. Its nearness allows us to study each galaxy in great detail. We have selected Virgo galaxies with a range of star formation properties in low to high density regions (at the projected distance from M87, d_87=0.3-3.3 Mpc). Contrary to pr evious studies, more than half of the galaxies in the sample (~60%) are fainter than 12 mag in B_T. Overall, the selected galaxies represent the late type Virgo galaxies (S0/a to Sd/Irr) down to m_p<~14.6 fairly well in morphological type, systemic velocity, subcluster membership, HI mass and deficiency. In this paper (VIVA I: the atlas and the HI properties), we present HI maps and properties, and describe the HI morphology and kinematics of individual galaxies in detail (abbreviated).Comment: K band magnitudes for 6 galaxies in Table 3 have been corrected. One of the labels in Figure 8 is corrected and an omission in the acknowledgments has been added. The latter two were correct in the previous astro-ph version but are wrong in the journal version. A full resolution with the complete HI atlas can be downloaded at http://www.astro.yale.edu/viva/pub.htm

    Cosmological Constant, Dark Matter, and Electroweak Phase Transition

    Full text link
    Accepting the fine tuned cosmological constant hypothesis, we have recently proposed that this hypothesis can be tested if the dark matter freeze out occurs at the electroweak scale and if one were to measure an anomalous shift in the dark matter relic abundance. In this paper, we numerically compute this relic abundance shift in the context of explicit singlet extensions of the Standard Model and explore the properties of the phase transition which would lead to the observationally most favorable scenario. Through the numerical exploration, we explicitly identify a parameter space in a singlet extension of the standard model which gives order unity observable effects. We also clarify the notion of a temperature dependence in the vacuum energy.Comment: 58 pages, 10 figure
    • …
    corecore