47,604 research outputs found

    Tunable Fano-Kondo resonance in side-coupled double quantum dot system

    Full text link
    We study the interference between the Fano and Kondo effects in a side-coupled double-quantum- dot system where one of the quantum dots couples to conduction electron bath while the other dot only side-couples to the first dot via antiferromagnetic (AF) spin exchange coupling. We apply both the perturbative renormalization group (RG) and numerical renormalization group (NRG) approaches to study the effect of AF coupling on the Fano lineshape in the conduction leads. With particle-hole symmetry, the AF exchange coupling competes with the Kondo effect and leads to a local spin-singlet ground state for arbitrary small coupling, so called "two-stage Kondo effect". As a result, via NRG we find the spectral properties of the Fano lineshape in the tunneling density of states (TDOS) of conduction electron leads shows double dip-peak features at the energy scale around the Kondo temperature and the one much below it, corresponding to the two-stage Kondo effect; it also shows an universal scaling behavior at very low energies. We find the qualitative agreement between the NRG and the perturbative RG approach. Relevance of our work to the experiments is discussed.Comment: 7 pages, 7 figure

    Quantum criticality out of equilibrium in the pseudogap Kondo model

    Full text link
    We theoretically investigate the non-equilibrium quantum phase transition in a generic setup: the pseudogap Kondo model where a quantum dot couples to two-left (L) and right (R)-voltage-biased fermionic leads with power-law density of states (DOS) with respect to their Fermi levels {\mu}_L/R, {\rho}_c,L(R) ({\omega}) \propto |{\omega} - {\mu}_L(R) |r, and 0 < r < 1. In equilibrium (zero bias voltage) and for 0 < r < 1/2, with increasing Kondo correlations, in the presence of particle-hole symmetry this model exhibits a quantum phase transition from a unscreened local moment (LM) phase to the Kondo phase. Via a controlled frequency-dependent renormalization group (RG) approach, we compute analytically and numerically the non-equilibrium conductance, conduction electron T-matrix and local spin susceptibility at finite bias voltages near criticality. The current-induced decoherence shows distinct nonequilibrium scaling, leading to new universal non-equilibrium quantum critical behaviors in the above observables. Relevance of our results for the experiments is discussed.Comment: 4.1 pages, 2 figure

    Extraction of nuclear matter properties from nuclear masses by a model of equation of state

    Get PDF
    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei. It is shown that the volume energy a1a_1 and the nuclear incompressibility K0K_0 depend essentially on μnN+μˉpZ2EN\mu_n N+\bar{\mu}_p Z-2E_N, whereas the symmetry energy JJ and the density symmetry coefficient LL as well as symmetry incompressibility KsK_s depend essentially on μnμˉp\mu_n-\bar{\mu}_p, where μˉp=μpEC/Z\bar{\mu}_p=\mu_p-\partial E_C/\partial Z, μn\mu_n and μp\mu_p are the neutron and proton chemical potentials respectively, ENE_N the nuclear energy, and ECE_C the Coulomb energy. The obtained symmetry energy is J=28.5MeVJ=28.5MeV, while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.Comment: 12 pages and 7 figure

    Reliability assessment of microgrid with renewable generation and prioritized loads

    Full text link
    With the increase in awareness about the climate change, there has been a tremendous shift towards utilizing renewable energy sources (RES). In this regard, smart grid technologies have been presented to facilitate higher penetration of RES. Microgrids are the key components of the smart grids. Microgrids allow integration of various distributed energy resources (DER) such as the distributed generation (DGs) and energy storage systems (ESSs) into the distribution system and hence remove or delay the need for distribution expansion. One of the crucial requirements for utilities is to ensure that the system reliability is maintained with the inclusion of microgrid topology. Therefore, this paper evaluates the reliability of a microgrid containing prioritized loads and distributed RES through a hybrid analytical-simulation method. The stochasticity of RES introduces complexity to the reliability evaluation. The method takes into account the variability of RES through Monte- Carlo state sampling simulation. The results indicate the reliability enhancement of the overall system in the presence of the microgrid topology. In particular, the highest priority load has the largest improvement in the reliability indices. Furthermore, sensitivity analysis is performed to understand the effects of the failure of microgrid islanding in the case of a fault in the upstream network

    Effective nucleon-nucleon interactions and nuclear matter equation of state

    Get PDF
    Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and Tondeur interactions are written as polynomials of the cubic root of density, with coefficients that are functions of the relative neutron excess δ\delta. In the extrapolation toward states far away from the standard one, it is shown that the asymmetry dependence of the critical point (ρc,δc\rho_c, \delta_c) depends on the model used. However, when the equations of state are fitted to the same standard state, the value of δc\delta_c is almost the same in Skyrme and in Myers-Swiatecki interactions, while is much lower in Tondeur interaction. Furthermore, δc\delta_c does not depend sensitively on the choice of the parameter γ\gamma in Skyrme interaction.Comment: 15 pages, 9 figure

    Fast Spectral Clustering Using Autoencoders and Landmarks

    Full text link
    In this paper, we introduce an algorithm for performing spectral clustering efficiently. Spectral clustering is a powerful clustering algorithm that suffers from high computational complexity, due to eigen decomposition. In this work, we first build the adjacency matrix of the corresponding graph of the dataset. To build this matrix, we only consider a limited number of points, called landmarks, and compute the similarity of all data points with the landmarks. Then, we present a definition of the Laplacian matrix of the graph that enable us to perform eigen decomposition efficiently, using a deep autoencoder. The overall complexity of the algorithm for eigen decomposition is O(np)O(np), where nn is the number of data points and pp is the number of landmarks. At last, we evaluate the performance of the algorithm in different experiments.Comment: 8 Pages- Accepted in 14th International Conference on Image Analysis and Recognitio

    Nuclear matter properties and relativistic mean-field theory

    Get PDF
    Nuclear matter properties are calculated in the relativistic mean field theory by using a number of different parameter sets. The result shows that the volume energy a1a_1 and the symmetry energy JJ are around the acceptable values 16MeV and 30MeV respectively; the incompressibility K0K_0 is unacceptably high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry LL is around 100MeV100MeV for most parameter sets, and the symmetry incompressibility KsK_s has positive sign which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there exists a critical point (ρc,δc)(\rho_c, \delta_c), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero, falling into ranges 0.014fm3<ρc<0.039^{-3}<\rho_c<0.039fm3^{-3} and 0.74<δc0.950.74<\delta_c\le0.95; for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound. The maximum mass MNSM_{NS} of neutron stars is predicted in the range 2.45MMNS3.26_\odot\leq M_{NS}\leq 3.26M_\odot, the corresponding neutron star radius RNSR_{NS} is in the range 12.2kmRNS15.1\leq R_{NS}\leq 15.1km.Comment: 10 pages, 5 figure

    Quasirandom permutations are characterized by 4-point densities

    Get PDF
    For permutations π and τ of lengths |π|≤|τ| , let t(π,τ) be the probability that the restriction of τ to a random |π| -point set is (order) isomorphic to π . We show that every sequence {τj} of permutations such that |τj|→∞ and t(π,τj)→1/4! for every 4-point permutation π is quasirandom (that is, t(π,τj)→1/|π|! for every π ). This answers a question posed by Graham
    corecore