4 research outputs found

    Trade-Old-for-Remanufactured Closed-Loop Supply Chains with Carbon Tax and Government Subsidies

    No full text
    The constantly increasing CO2 emissions are threatening the environment tremendously. Facing the pressure of environmental activists and public opinion, businesses and governments are taking action to reduce carbon emissions. Among these endeavors, carbon tax and subsidy policies proposed by governments are widely adopted. Remanufacturing is believed to save manufacturing costs and reduce carbon emissions from the process of enterprise operation, and it is increasingly being accepted by enterprises. However, different consumers’ willingness to pay for remanufactured products and the durability of new products will also affect consumers’ willingness to buy remanufactured products. Therefore, considering the discrepancy between consumer willingness to pay and product durability, we established the trade-old-for-remanufactured (TOR) model for a scenario of carbon tax and government subsidies. Through the analysis of the model, we obtained the optimal pricing and production decisions of manufacturers (remanufacturers) in the case of carbon tax and government subsidies. Our results show that, when there is no carbon tax constraint, the increase in consumer willingness to pay and the adjustment in product durability can stimulate consumers to participate in TOR projects and augment enterprises’ profits. However, it can also lead to a carbon rebound that increases corporate carbon emissions. When there is a carbon tax constraint, the introduction of carbon tax contributes to a reduction in carbon emissions, while enterprises tend to lose profits. In order to achieve a “win-win„ between corporate profits and carbon emissions, we considered government subsidy policies. Our numerical examples illustrate that appropriate carbon tax and government subsidies can curb carbon emissions and also increase profits for enterprises

    Exploitation of Citrus Peel Extract as a Feedstock for Power Generation in Microbial Fuel Cell (MFC)

    Get PDF
    Microbial fuel cells (MFCs) are envisioned as an evolving cost-effective process for treating organic wastes to simultaneously generate bioelectricity. Therefore, in present study a single chambered mediator- less air cathode MFC was operated for bioelectricity generation using citrus waste (CW) as a feedstock. The MFC was operated at four organic loading conditions (OLs; 3, 6, 9 and 12 kg/m3). The voltage generation and organic content reduction demonstrated the possibility of utilizing CW as a substrate in MFC. The polarization analysis revealed a high-power generation of 71.1 mW/m2 with low OL of 3 kg/m3. The decrease in pH and high volatile fatty acids (VFAs) generation was noted at high OL. Our current findings suggest better performance of MFC, in terms of energy generation and organic reduction at high OL.This research was supported by Brain Pool Grant (NRF-2019H1D3A2A01060226) by National Research Foundation of Korea to work at Konkuk University (VCK). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013M3A6A8073184). This research was supported by 2018 KU Brain Pool of Konkuk University.Scopu
    corecore