35 research outputs found

    Evaluation of Crossbreeding of Australian Superfine Merinos with Gansu Alpine Finewool Sheep to Improve Wool Characteristics.

    No full text
    Crossbreeding of Australian Superfine Merinos (ASMs) with Gansu Alpine Finewool (GAF) sheep and an evaluation of the potential benefits of this genetic cross has not been previously conducted. 13 ASMs were crossbred with GAF sheep over a five year period with backcrossing designed to assess heterosis. Data from 11,178 lambs sired by 189 rams were used in the study. Genotype, birth year, birth type, dam age, sex and/or management group, and record age were fitted as fixed effects and within-genotype sire fitted as a random effect. Crossbreeds of 1/2 ASM expressed the most desirable effects for improving average fiber diameter (AFD), clean fleece weight (CFW), yield, coefficient of variation of AFD (CVAFD), yearling staple length (YSL) to AFD ratio (YSL/AFD), and CFW to metabolic yearling bodyweight (YWT0.75) ratio (CFW/YWT0.75) but showed the least post-weaning average daily gain (powADG) and YWT. Genotype of backcrossing with 1/4 ASM obtained moderate improvements in AFD, CFW, CVAFD, and YSL/AFD but the highest YSL, WWT, and prwADG. Except for yield (-1.42%) and CFW/YWT0.75 (-1%), heterosis estimates were generally low and positive, and ranged from 0.1% for CVAFD to 4% for powADG, which indicates the potential to improve relevant traits through exploiting heterosis to a varying extent. The ASMs sampled in this study were found to be superior to GAFs for AFD, CFW, yield, and CVAFD by 19.82%, 11.68%, 14.47%, and 6.99%, respectively, but inferior for YSL, PowADG, and YWT by 4.36%, 50.97%, and 16.93%, respectively. ASMs also appeared to be more efficient than GAFs in clean wool production (25.34%) and staple length growth (16.17%). The results of our study strongly suggest that an infusion of ASM genes via crossbreeding is an effective and appropriate approach to improve wool microns and wool production from GAF sheep, and we make recommendations to tackle the undesirable traits of YWT and YSL from ASM introduction

    Predicted Means (± Standard Error) for Wool Traits plus Significance of Two-way Interactions of Fixed Effects.

    No full text
    <p>Predicted Means (± Standard Error) for Wool Traits plus Significance of Two-way Interactions of Fixed Effects.</p

    Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry and Rapid Evaporative Ionization Mass Spectrometry Were Used to Develop a Lamb Authentication Method: A Preliminary Study

    No full text
    A untargeted metabolomics approach was proposed in this study based on ultra-high performance liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) and rapid evaporative ionization mass spectrometry (REIMS) to discriminate lamb and mutton meat and investigate their subtle metabolic differences, considering the higher popularity of lamb meat than mutton in the market. Multivariate statistical analysis was performed for data processing in order to distinguish between the two sample types. A total of 42 potential metabolites (20 in positive and 22 in negative ion mode) were defined for UHPLC-QTOF analysis, which provided references for discriminating the two kinds of meat. Furthermore, three potential markers were tentatively identified using LC/MS data against chemical databases. In addition, 14 potential metabolites were putatively identified in negative ion mode using the LipidMaps database. Meanwhile, the data-driven soft independent modeling of class analogy (DD-SIMCA) model was established, which could rapidly differentiate non-pretreated lamb meat and mutton with 92% specificity, rendering REIMS a promising technique for meat identification

    Number of Animals and Data Structure for the AG, AGG, and GG Genotypes involved in the Investigation over Five Years.

    No full text
    <p>Number of Animals and Data Structure for the AG, AGG, and GG Genotypes involved in the Investigation over Five Years.</p

    Predicted Means (± Standard Error) for Fixed Effects plus the Significance of any Two-way Interactions.

    No full text
    <p>Predicted Means (± Standard Error) for Fixed Effects plus the Significance of any Two-way Interactions.</p

    Estimation of Heterosis and Comparison of True Breed Difference.

    No full text
    <p>Estimation of Heterosis and Comparison of True Breed Difference.</p

    Quantitative proteomic analysis identified differentially expressed proteins with tail/rump fat deposition in Chinese thin- and fat-tailed lambs.

    No full text
    Tail adipose as one of the important functional tissues can enhance hazardous environments tolerance for sheep. The objective of this study was to gain insight into the underlying development mechanisms of this trait. A quantitative analysis of protein abundance in ovine tail/rump adipose tissue was performed between Chinese local fat- (Kazakh, Hu and Lanzhou) and thin-tailed (Alpine Merino, Tibetan) sheep in the present study by using lable-free approach. Results showed that 3400 proteins were identified in the five breeds, and 804 were differentially expressed proteins, including 638 up regulated proteins and 83 down regulated proteins in the tail adipose tissues between fat- and thin-tailed sheep, and 8 clusters were distinguished for all the DEPs' expression patterns. The differentially expressed proteins are mainly associated with metabolism pathways and peroxisome proliferator activated receptor signaling pathway. Furthermore, the proteomics results were validated by quantitative real-time PCR and Western Blot. Our research has also suggested that the up-regulated proteins ACSL1, HSD17β4, FABP4 in the tail adipose tissue might contribute to tail fat deposition by facilitating the proliferation of adipocytes and fat accumulation in tail/rump of sheep. Particularly, FABP4 highly expressed in the fat-tail will play an important role for tail fat deposition. Our study might provide a novel view to understanding fat accumulation in special parts of the body in sheep and other animals

    Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep

    No full text
    Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep

    GO functional analysis of DEGs and NATs.

    No full text
    <p>The results were summarized in three main categories: biological process, cellular component and molecular function. Among these groups, the terms binding, cell part and metabolic process were dominant in each of the three main categories, respectively.</p
    corecore