44 research outputs found

    PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections

    No full text
    When antibiotic-resistant pathogenic bacteria pose a high threat to human health, bacterial multidrug efflux pumps become major contributors to the high-level antibiotic resistance in most microorganisms. Since traditional antibiotics are still indispensable currently, we report a dual drug delivery system to maximize the antibacterial efficacy of antibiotics by inhibiting efflux pumps in bacteria before their exposure to antibiotics. In this research, a microsphere/hydrogel composite was constructed from ciprofloxacin (Cip)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres and ginsenoside Rh2 (G-Rh2) dispersed thermo-sensitive hydrogel to treat skin infections. In vitro drug release studies indicated that while G-Rh2 in hydrogel presented a faster and short-term release manner to rapidly inhibit the NorA efflux pumps, Cip showed a sustained and long-term release behavior to provide a local high concentration gradient for facilitating drug percutaneous penetration. The combination of Cip and G-Rh2 demonstrated a high degree of synergism against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), hence significantly improving their in vitro antibacterial activity and efficiency. Moreover, the antibacterial performance of the microsphere/hydrogel composite with a sequential release profile is superior to that of other formulations in mouse model of MRSA skin infections, indicating its great potential to treat antibiotic-resistant skin infections

    Quantitative proteomic analysis identified differentially expressed proteins with tail/rump fat deposition in Chinese thin- and fat-tailed lambs.

    No full text
    Tail adipose as one of the important functional tissues can enhance hazardous environments tolerance for sheep. The objective of this study was to gain insight into the underlying development mechanisms of this trait. A quantitative analysis of protein abundance in ovine tail/rump adipose tissue was performed between Chinese local fat- (Kazakh, Hu and Lanzhou) and thin-tailed (Alpine Merino, Tibetan) sheep in the present study by using lable-free approach. Results showed that 3400 proteins were identified in the five breeds, and 804 were differentially expressed proteins, including 638 up regulated proteins and 83 down regulated proteins in the tail adipose tissues between fat- and thin-tailed sheep, and 8 clusters were distinguished for all the DEPs' expression patterns. The differentially expressed proteins are mainly associated with metabolism pathways and peroxisome proliferator activated receptor signaling pathway. Furthermore, the proteomics results were validated by quantitative real-time PCR and Western Blot. Our research has also suggested that the up-regulated proteins ACSL1, HSD17β4, FABP4 in the tail adipose tissue might contribute to tail fat deposition by facilitating the proliferation of adipocytes and fat accumulation in tail/rump of sheep. Particularly, FABP4 highly expressed in the fat-tail will play an important role for tail fat deposition. Our study might provide a novel view to understanding fat accumulation in special parts of the body in sheep and other animals

    Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep

    No full text
    Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep

    GO functional analysis of DEGs and NATs.

    No full text
    <p>The results were summarized in three main categories: biological process, cellular component and molecular function. Among these groups, the terms binding, cell part and metabolic process were dominant in each of the three main categories, respectively.</p

    The size of secondary DP cells between two groups.

    No full text
    <p>The diameter of super fine wool sheep secondary DP cells = 3.2±0.2μm (A), the diameter of fine wool sheep secondary DP cells = 4.1±0.2μm (B).</p
    corecore