29 research outputs found

    Redox Regulation in Cancer Stem Cells

    Get PDF
    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment

    High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study

    Get PDF
    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus (P < 0.05), but decreased the abundance of Lactobacillus (P < 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion

    theselfassemblingandapplicationofinorganicantibacterialmaterialmadeofnaturalnanoporouscarrier

    No full text
    The inorganic anti microbial material was inhibited to the microbes with the added metal ion, Zn. The primary wet product carrying 5%-10% zinc ion was generated under the following conditions: temperature was 95 degrees C, solution zinc concentration was 1.2-2.0 mol/L, and the ratio of Zn solution to zeolite weight was 5 : 1. The final stable product was manufactured after baking in,in oven for 1-3 It at the temperature of 500-900 degrees C. The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating. Based on the final batch of tests, the zinc content Of this anti-microbial product was further optimized

    Effects of processing methods on the properties and digestibility of protein and fat in meat products

    Get PDF
    Protein and fat in foods of animal origin are important macronutrients for maintaining human growth and function. When measuring the nutritional properties of animal-derived diets, it is important to consider the effect of processing methods on their digestibility and nutritional properties. The purpose of this study is to investigate the effects of different processing methods on the properties and bioavailability of pork protein and fat. The molecular structure, oxidation degree and digestion characteristics of pork protein and fat in four processing methods (boiling, emulsifying, salting and fermentation) were studied. The results showed that the endogenous fluorescence and secondary structure of proteins were affected by the processing method. Fermentation and salting had greater influence on the properties of proteins. Salting caused a significant increase in the oxidation of pork fat. The potential and secondary structure characteristics of different meat products also showed differences during digestion, which ultimately affected their digestive characteristics. Salting and fermentation decreased the digestibility of pork protein, but increased the digestibility of fat. This finding may provide new insights into the structural states and digestive properties of proteins and fats in different meat products

    The severity of NEC is ameliorated by prostaglandin E2 through regulating intestinal microcirculation

    No full text
    Abstract Prostaglandin E2 (PGE2) is implicated in intestinal inflammation and intestinal blood flow regulation with a paradoxical effect on the pathogenesis of necrotizing enterocolitis (NEC), which is not yet well understood. In the current study, we found that PGE2, EP4, and COX-2 varied at different distances from the most damaged area in the terminal ileum obtained from human infants with NEC. PGE2 administration alleviated the phenotype of experimental NEC and the intestinal microvascular features in experimental NEC, but this phenomenon was inhibited by eNOS depletion, suggesting that PGE2 promoted intestinal microcirculatory perfusion through eNOS. Furthermore, PGE2 administration increased the VEGF content in MIMECs under TNFα stress and promoted MIMEC proliferation. This response to PGE2 was involved in eNOS phosphorylation and nitric oxide (NO) production and was blocked by the EP4 antagonist in vitro, suggesting that targeting the PGE2–EP4–eNOS axis might be a potential clinical and therapeutic strategy for NEC treatment. The study is reported in accordance with ARRIVE guidelines ( https://arriveguidelines.org )

    Cytoplasm Types Affect DNA Methylation among Different Cytoplasmic Male Sterility Lines and Their Maintainer Line in Soybean (Glycine max L.)

    No full text
    Cytoplasmic male sterility (CMS) lines and their maintainer line have the same nucleus but different cytoplasm types. We used three soybean (Glycine max L.) CMS lines, JLCMS9A, JLCMSZ9A, and JLCMSPI9A, and their maintainer line, JLCMS9B, to explore whether methylation levels differed in their nuclei. Whole-genome bisulfite sequencing of these four lines was performed. The results show that the cytosine methylation level in the maintainer line was lower than in the CMS lines. Compared with JLCMS9B, the Gene Ontology (GO) enrichment analysis of DMR (differentially methylated region, DMR)-related genes of JLCMS9A revealed that their different 5-methylcytosine backgrounds were enriched in molecular function, whereas JLCMSZ9A and JLCMSPI9A were enriched in biological process and cellular component. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis of DMR-related genes and different methylated promoter regions in different cytosine contexts, hypomethylation or hypermethylation, showed that the numbers of DMR-related genes and promoter regions were clearly different. According to the DNA methylation and genetic distances separately, JLCMS9A clustered with JLCMS9B, and JLCMSPI9A with JLCMSZ9A. Thus, the effects of different cytoplasm types on DNA methylation were significantly different. This may be related to their genetic distances revealed by re-sequencing these lines. The detected DMR-related genes and pathways that are probably associated with CMS are also discussed
    corecore